64 research outputs found
On control laws for discrete linear repetitive processes with dynamic boundary conditions
Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations in the sequence of pass profiles produced which increase in amplitude in the pass-to-pass direction and cannot be controlled by application of standard control laws. Here we give new results on the design of physically based control laws for so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control
On controllability and control laws for discrete linear repetitive processes
Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic and applications interest. They cannot be controlled by the direct extension of existing techniques from either standard (termed 1D here) or 2D systems theory. This article develops significant new results on the relationships between one physically motivated concept of controllability for the so-called discrete linear repetitive processes and the structure and design of control laws, including the case when disturbances are present
On the Development of SCILAB Compatible Software for the Analysis and Control of Repetitive Processes
In this paper further results on the development of a SCILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal
A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters
In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable
H2/H∞ output information-based disturbance attenuation for differential linear repetitive processes
Repetitive processes propagate information in two independent directions where the duration of one is finite. They pose control problems that cannot be solved by application of results for other classes of 2D systems. This paper develops controller design algorithms for differential linear processes, where information in one direction is governed by a matrix differential equation and in the other by a matrix discrete equation, in an H2/H∞ setting. The objectives are stabilization and disturbance attenuation, and the controller used is actuated by the process output and hence the use of a state observer is avoided
A 2D Hopfield Neural Network approach to mechanical beam damage detection
The aim of this paper is to present a method based on a 2D Hopfield Neural Network for online damage detection in beams subjected to external forces. The underlying idea of the method is that a significant change in the beam model parameters can be taken as a sign of damage occurrence in the structural system. In this way, damage detection can be associated to an identification problem. More concretely, a 2D Hopfield Neural Network uses information about the way the beam vibrates and the external forces that are applied to it to obtain time-evolving estimates of the beam parameters at the different beam points. The neural network organizes its input information based on the Euler-Bernoulli model for beam vibrations. Its performance is tested with vibration data generated by means of a different model, namely Timonshenko's, in order to produce more realistic simulation conditions
- …