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Abstract The aim of this paper is to present a method based on a 2D Hop-
field Neural Network for online damage detection in beams subjected to ex-
ternal forces. The underlying idea of the method is that a significant change
in the beam model parameters can be taken as a sign of damage occurrence in
the structural system. In this way, damage detection can be associated to an
identification problem. More concretely, a 2D Hopfield Neural Network uses
information about the way the beam vibrates and the external forces that
are applied to it to obtain time-evolving estimates of the beam parameters at
the different beam points. The neural network organizes its input information
based on the Euler-Bernoulli model for beam vibrations. Its performance is
tested with vibration data generated by means of a different model, namely
Timonshenko’s, in order to produce more realistic simulation conditions.
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1 Introduction

Structural health monitoring using vibration based methods has shown to be
a feasible approach to detect and locate damage. For economical and safety
reasons, detecting beam cracks in their growth at an early stage is an important
issue. This topic has been discussed by several authors and different approaches
were proposed.

Some of the contributions use the fundamental mode shape as the most
typical dynamic property for damage localization and quantification [1]. In
beams with fatigue cracks, the control of the excitation force level is used for
damage detection and does not require a comparative measurement on an in-
tact structure [2]. In [3], the authors study the detection of fatigue damage on a
beam using experimentally obtained modal parameters. The use of the modal
parameters is justified since any beam can be considered as a dynamic system
characterized by stiffness, mass and damping coefficients. When a beam suffers
damage, the frequency response functions will change and the modal parame-
ters of the system will also change [4]. This change can be taken as an early sign
of damage occurrence in the structural system. In this way, damage detection
can be associated to a problem of tracking parameter variations through appro-
priate estimation techniques, like the recursive least-squares and the Kalman
filter [5]. Recently, a Hopfield Neural Network has been proposed in [6] for
parameter estimation in one-dimensional dynamical processes. That network
detects well parameter changes and can therefore be applied to damage de-
tection. Here, in order to take into account the higher dimensionality of the
process, a 2D version of that network is proposed. The 2D network enables a
recursive update of the parameter estimate both in time and (one-dimensional)
space. The estimate at a certain time instant and beam point depends on the
estimate, vibration data and external forces information at previous time in-
stants and neighbouring beam points. The way how the network organizes the
data collected from the beam is based on the Euler-Bernoulli model for beam
vibration. This model was chosen due to its simplicity.

The proposed identification method is illustrated by means of simulations.
In order to produce a more realistic simulation environment, the proposed
damage detection procedure is tested using data simulated from a different,
more complex model, namely a Tiomoshenko beam to which a damage is
inflicted at a certain time instant. These data are obtained using a p-finite
element, with appropriate displacement shape functions, of a beam model
based on Timoshenko’s theory for bending. The crack is represented by a small
indentation on the beam, with consequent changes in its mass and stiffness.

The remainder of the paper is organized as follows. Section 2 presents the
parameter estimation method for beam damage detection proposed here. This
is followed by a reformulation of the damped Euler-Bernoulli beam model that
allows for a better use of our methods described in Section 3. Section 4 explains
how the simulated data were obtained and presents the corresponding damage
detection results. The conclusions are drawn in Section 5.
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2 Parameter identification via 2D Hopfield neural networks

The use of Hopfield Neural Networks (HNN) has proved to be an efficient
method for online parameter estimation in one-dimensional processes [6]. Such
networks are basically nonlinear dynamical systems with an adequate struc-
ture, whose outputs are the time-evolving estimates of the relevant parameters.
In [6], a special architecture was proposed that guarantees that the parameter
estimates converge to their real values under some mild theoretical assump-
tions. Motivated by these results, here a 2D HNN approach based on an exten-
sion of the 1D HNN introduced in [6] is proposed in order to deal with higher
dimensional or distributed processes.

Before describing its two-dimensional version, first the 1D HNN introduced
in [6] is presented. This network is designed for one-dimensional dynamical
processes with a linear parameter dependency, i.e., for which the dynamical
equations can be rewritten as

y(t) = A(t) θ, (1)

where θ denotes the vector of parameters to be estimated and the vector y(t)
and the matrix A(t) can be computed from the process data and depend on the
model structure. Note that, the process dynamics may be nonlinear; linearity
is only a requirement for the parameter dependency. The HNN dynamics is
then given by

˙̂
θ(t) =

1

φγ
Dφ

(
θ̂(t)

)
AT (t)

(
y(t)−A(t)θ̂(t)

)
, (2)

where θ̂(t) represents the parameter estimate at time t,
˙̂
θ(t) is the first time

derivative, Dφ

(
θ̂(t)

)
is a positive definite (and thus invertible) matrix defined

as

Dφ

(
θ̂(t)

)
= diag

(
φ2 − θ̂2i (t)

)
(3)

and φ and γ are design parameters, φ chosen such that θi ∈ ]−φ, φ[ and γ
chosen to guarantee a suitable network performance (speed of convergence,

robustness to noise in the data, etc.). Letting ∆(t) = θ − θ̂(t) represent the
estimation error, equation (2) can be equivalently written as

∆̇(t) = − 1

φγ
Dφ (θ −∆(t))A(t)TA(t)∆(t). (4)

As shown in [6], the estimate trajectory θ̂(t) converges to the real parameter
vector θ under mild theoretical conditions, as stated in the following theorem.

Theorem 1 The equilibirium ∆∗ = 0 of the estimation error dynamics (4)
is globally uniformly asymptotically stable if for all nondegenerate interval
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I ⊂ [t0,+∞[, ⋂
t∈I

ker (A(t)) = 0. (5)

Note that, since A(t) depends on system data, this theorem presents a sort
of persistent excitation condition, under which the neural network is able to
estimate the model parameters.

Discretizing the HNN (2) using finite differences for a discretization step
of ∆t, yields:

σ θ̂(k) = θ̂(k) +
1

φγ
Dφ

(
θ̂(k)

)
AT (k)

(
y(k)−A(k)θ̂(k)

)
, (6)

where, for the sake of simplicity notation, θ̂(k), A(k) and y(k) now respectively

stand for θ̂(k∆t), A(k∆t) and y(k∆t), k = 0, 1, . . ., the design parameter γ

represents γ
∆t and σ is the time shift operator, defined by σθ̂(k) = θ̂(k + 1).

This means that the next parameter estimate σ θ̂(k) = θ̂(k + 1) is obtained

from the current estimate, θ̂(k), by adding a correction term involving the

measurement error y(k)−A(k)θ̂(k) and the variable gain 1
φγDφ

(
θ̂(k)

)
AT (k);

this gain depends on the design parameters φ and γ, on the current estimate
θ̂(k), and also on the process data gathered in AT (k).

It can be shown that for ∆t small enough the discrete 1D HNN (6) main-
tains the convergence properties of (2. Therefore, we shall take this as a basis
for defining a discrete 2D HNN to be used in the sequel for parameter identifi-
cation and damage detection in parameterized 2D processes defined over time
and (one-dimensional) space.

Hence, consider a parameterized 2D process in the time/linear-space. Like
in the 1D case, the parameter dependence is assumed to be linear and the
system dynamics can be rewritten as

y(x, t) = A(x, t) θ, (7)

where the vector y(x, t) and the matrix A(x, t) depend on the system signals
and their partial derivatives and θ is a vector of fixed parameters.

In order to estimate the parameters θ along time and space, the following
2D version of the discrete 1D HNN (6) is proposed:

σ2 θ̂(l, k) = θ̂(l, k) +

N∗∑
j=−N∗

αj(l)σ
j
1 F
(
θ̂(l, k), A(l, k), y(l, k)

)
, (8)

where l is the space discrete variable, k is the time discrete variable, σ2 stands
for the time-shift, i.e., σ2 h(l, k) = h(l, k+ 1), σ1 is the space-shift, defined by

σj1 h(l, k) = h(l + j, k), the weights αj(l) are design coefficients,

F
(
θ̂(l, k), A(l, k), y(l, k)

)
=

1

φγ
Dφ(θ̂(l, k))A

T (l, k)
(
y(l, k)−A(l, k)θ̂(l, k)

)
, (9)
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l

k

(l, k + 1)

(l −N∗, k) (l, k) (l +N∗, k)

Fig. 1 Updating structure for Equation (8).

Dφ(θ̂(l, k)) = diag
(
φ2 − θ̂i

2
(l, k)

)
,

and φ and γ are suitable design parameters like in the 1D HNN. Moreover,
again to keep notation simple, A(l, k) and y(l, k) are defined as the discretiza-
tions of A(x, t) and y(x, t), respectively, with spatial lag ∆x and time lag ∆t;
more concretely,

A(l, k) = A(l ∆x, k ∆t) (10)

y(l, k) = y(l ∆x, k ∆t) (11)

for l = 0, 1, . . . and k = 0, 1, . . .

This means that the next parameter estimate at point l, σ2 θ̂(l, k) = θ̂(l, k+1),

is obtained from the current estimate at that point, θ̂(l, k), by adding a αj(l)-

weighted sum of correction terms σj1 F
(
θ̂(l, k), A(l, k), y(l, k)

)
= F

(
θ̂(l + j, k),

A(l + j, k), y(l + j, k)) that incorporate the measurement errors y(l + j, k)−
A(l + j, k)θ̂(l + j, k) in the neighbouring points l + j, j = −N∗, . . . , N∗, in a
similar way as in the 1D case (see (9)).

The updating structure of the nonlinear 2D difference equation (8) is shown
in Fig. 1.

In this setting, convergence to the parameter vector θ is understood as

lim
k→∞

sup
l∈Z

∥∥∥θ̂(l, k)− θ
∥∥∥ = 0 . (12)
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A theoretical analysis of this convergence problem will be presented elsewhere.
In this paper, devoted to an application, we shall focus on the use of the
proposed discrete 2D HNN for damage detection in vibrating beams.

3 BEAM DAMAGE DETECTION

As mentioned before, our approach consists in detecting damage on a beam by
monitoring the online estimates of the parameters of a corresponding mathe-
matical model. This is based on the idea that damage corresponds to a change
on the beam characteristics, which is in turn translated into a change in the
parameters of the model that describes the beam dynamics.

Note that the damage detection problem is treated in a 2D framework in
spite of the beam length being finite. This type of approach is also frequent in
repetitive processes, in the sense that it is also common to see a system that
is finite in one of the directions to be treated as a 2D system (see [19], for
instance). Looking at the damage detection problem in a 2D context allows
us to choose different discretization steps in both directions, time and one-
dimensional space, which is an advantage. Moreover, the smaller the step in
one direction, the greater the number of points in that direction, and hence,
in a certain sense, the greater the extension of that direction.

3.1 Beam model

Here, the beam is considered to be described by a damped Euler-Bernoulli
model [8], i.e.,

µ ẅ(x, t) + c ẇ(x, t) + EI
∂4w

∂x4
(x, t) = q(x, t), (13)

where w(x, t) is the transversal displacement at instant t and location x, ẇ(x, t)
and ẅ(x, t) are, respectively, the first and second derivatives of w(x, t) with
respect to t, and the parameters µ, c, EI correspond to the mass, damping
coefficient and stiffness, respectively. The external force q(x, t) is considered
to be a harmonic excitation with amplitude F and frequency ω applied at the
middle point of the beam, i.e.,

q(x, t) = δ

(
x− L

2

)
F sin(ωt) (14)

where L is the length of the beam and δ is the unit spatial impulse. Moreover,
it is assumed that the beam is clamped at both ends, which corresponds to
the following boundary conditions:

w(x, t)|x=0,L = 0 and
∂w

∂x
(x, t)

∣∣∣∣
x=0,L

= 0. (15)
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Note that this model is linear in the parameters in the sense that it can be
rewritten as

y(x, t) = A(x, t) θ (16)

with y(x, t) = ẅ(x, t), A(x, t) =
[
−ẇ(x, t) − ∂4w

∂x4 (x, t) q(x, t)
]

and

θ = [θ1 θ2 θ3]
T

=
[
c
µ

EI
µ

1
µ

]T
, for instance.

The presence of the fourth spatial derivative of the deflection w(x, t),
∂4w
∂x4 (x, t), may cause computational problems. An alternative to overcome this
drawback is to reformulate the original Euler-Bernoulli model. For this pur-
pose, a procedure based on Galerkin’s method is used [9]. First, the transversal
displacement w(x, t) is expanded in an orthonormal basis for the spatial com-
ponent with time-dependent coefficients. This allows to obtain the natural
vibrations forms for the beam as solutions of ODEs. These spatial functions

can in turn be used to obtain the fourth spatial derivative ∂4w
∂x4 (x, t).

More concretely, the deflection w(x, t) is written as

w(x, t) =

∞∑
i=1

gi(x) fi(t) , (17)

and approximated as

w(x, t) =

M∑
i=1

gi(x) fi(t) , (18)

for some M , where the functions gi(x) correspond to natural vibration forms
for a beam with clamped ends [10], i.e., each gi(x) is the solution of

d4g

dx4
(x)− ζ4i g(x) = 0

g(0) = g(L) = 0 (19)

dg

dx
(0) =

dg

dx
(L) = 0,

where each ζi is a solution of the equation

cos(ζ L)cosh(ζ L) = 1 . (20)

For instance, the values of the first five ζi for a beam of length L are given
by ζ1 = 4.73/L, ζ2 = 7.85/L, ζ3 = 11.00/L, ζ4 = 14.14/L and ζ5 = 17.28/L
(further details can be found in Table D.3 of [11], p. 371).

Thus, gi(x) is given by

gi(x) = cosh(ζi x)− cos(ζi x)− αi (sinh(ζi x)− sin(ζi x)) , (21)

with

αi =
1

sinh(ζi L)sin(ζi L)
. (22)
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Here, for the sake of simplicity in the exposition, it is assumed that the
value of M in (18) is taken to be 1, M = 1, i.e., only the first natural vibration
mode is considered, and in this way the beam deflection is assumed to be given
by

w(x, t) = g(x) f(t), (23)

where g(x) = g1(x) is given by (21) for ζ1 = 4.73/L (as above).
Substituting (23) in (13) and recalling that q(x, t) = δ

(
x− L

2

)
F sin(ωt),

the Euler-Bernoulli equation, with the considered boundary conditions, is
equivalent to:

g(x)f̈(t) + θ1 g(x)ḟ(t) + θ2
d4g

d x4
(x)f(t) = θ3 δ

(
x− L

2

)
F sin(ωt). (24)

Multiplying both sides of equation (24) by the function g(x), integrating
with respect to x in the interval [0, L] and taking into account that w(x, t) =
g(x)f(t), the following alternative formulation is obtained:

ẅ(x, t) + θ1 ẇ(x, t) + θ2 ηw(x, t) = θ3K g(x)Fsin(ωt), (25)

where K = g(L/2)
G with G =

∫ L
0
g2(x) dx and η = ζ1

4.
This finally yields the equation

ẅ(x, t)︸ ︷︷ ︸
y(x,t)

= [−ẇ(x, t) − ηw(x, t) K g(x)Fsin(ωt)]︸ ︷︷ ︸
A(x,t)

 θ1θ2
θ3


︸ ︷︷ ︸

θ

. (26)

For a time discretization lag ∆t and a spatial discretization lag ∆x = L
m−1 ,

corresponding to the division of the interval [0, L] into m−1 intervals of equal
length, one obtains:

y(l, k) = A(l, k) θ (27)

where, following the previously introduced notation,

y(l, k) = y(l∆x, k∆t) and (28)

A(l, k) = A(l∆x, k∆t). (29)

Finally, it is not difficult to check that y(l, k) and A(l, k) can be obtained
as

y(l, k) = ẅ(l∆x, k∆t) (30)

A(l, k) = [−ẇ(l∆x, k∆t) − η w(l∆x, k∆t) −K g(l∆x)F sin(ω k∆t)](31)
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4 Simulations

This section starts by presenting the Timoshenko model used to simulate vi-
bration data different from those generated by the Euler-Bernouli model, on
which the discrete 2D Hopfield Neural Network damage detection method is
based. Then, the results of the application of this method to that data are
presented.

4.1 Simulation model

In order to test the damage detection procedure, a different model, indepen-
dent from the one employed in the damage detection algorithm, was used to
generate vibration data corresponding to healthy and damaged beams. Al-
though being still within a simulation framework, this seems to be a more
realistic situation, as it mimics the misfit between models and reality. The
model used to simulated the beam vibration is based on a Timoshenko type
p-version finite element and was introduced in [12] see also [13]). We used
this model to obtain the data w(x, t), ẇ(x, t) and ẅ(x, t) from which y(x, t)
and A(x, t) in (26) are constructed and then given as inputs in their discrete
versions to the 2D HNN (8). For the sake of completeness, the main steps of
the formulation are described here.

Although geometrical non-linearity was taken into account in [12], only
the linear part of the model is now presented, because small displacements
are considered in the test cases of this paper. In this model, damage is repre-
sented by an always open notch or indentation, with corresponding mass and
stiffness loss. The beam has rectangular cross section of thickness h and width
b. Measured from the beams middle, the notch starts at x = l1 and ends at
x = l2, its depth is h1 (see figure below).

Fig. 2 Damaged beam with local and global coordinate system.

The displacement components along the beam axis, x, and in the direction
perpendicular to it, z, are represented by u(x, z, t) and w(x, z, t), respectively.
They are given by

u(x, z, t) = u0(x, t) + z π0(x, t), w(x, z, t) = w0(x, t), (32)
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where superscript
′′0′′ represents the axis that crosses the undamaged cross

section centroids, i.e. axis x, and t represents time; cross section rotations are
represented by π0(x, t).

Note that the transversal displacement w(x, t) of the Euler-Bernoulli model
corresponds to the w0(x, t) of the Timoshenko model. The derivatives ẇ(x, t)
and ẅ(x, t) are obtained by numerical differentiation.

The longitudinal strain and the engineering shear strain are, respectively,

εx(x, t) =
∂u0

∂x
(x, t) + z

∂π0

∂x
(x, t) (33)

γxz(x, t) =
∂w0

∂x
(x, t) + π0(x, t). (34)

The displacement components at axis x and the cross section rotation form
vector d0(ξ̄, t), which is expressed as the product of the hierarchical shape
functions matrix N(ξ̄) by the vector of generalized displacements q(t):

d0(ξ̄, t) = N(ξ̄)q(t) ⇔

 u0(ξ̄, t)
w0(ξ̄, t)
π0(ξ̄, t)

 =

Nu(ξ̄)T 0 0
0 Nw(ξ̄)T 0
0 0 Nπ(ξ̄)T

 qu(t)
qw(t)
qπ(t)

 , (35)

qu(t), qw(t) and qπ(t) are vectors of generalized displacements. The matrix of
shape functions N(ξ̄) is constituted by row vectors of longitudinal, transverse
and rotation shape functions. To improve the accuracy of the discretization,
the number of shape functions and generalized displacements in a finite ele-
ment are increased. A non-dimensional co-ordinate, ξ̄, was inserted in equation
(35), as is common in finite elements; however, because one element is sufficient
to describe the whole beam, the relation between ξ̄ and x is simply ξ̄ = 2x/L.
The set of shape functions employed here is given in [12]; this set includes new
functions which improve the efficiency of the p-version FEM in the presence
of localized steep variations.

The material is assumed to behave in a linear elastic manner and to be
isotropic, hence generalized Hooke’s law holds, so (without function arguments,
in order to simplify the notation)

σ = D ε ⇔
[
σx
τxz

]
=

[
E 0
0 λG

] [
εx
γxz

]
. (36)

In equation (36) E is the Young modulus and G is the shear modulus of
elasticity, which is equal to 1

2(2+ν) and ν is the passion ratio and λ is the shear

correction factor, which we assume to be 5+5ν
6+5ν after [14]; σ and ε are vectors

which contain, respectively, the non-zero stresses and the strains of interest
here. The longitudinal strain can be written as

εx =
[

1 z
] [ εp0
εb0

]
, (37)
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with εp0 the longitudinal and z εb0 the bending strain.
Integrating along the normal stress, the shear stress and the moment the

normal stress about y, one obtains a longitudinal force per unit length, T , a
transverse force per unit length, Q, and a moment per unit length, M . They
are

[
T
M

]
=

[
A B
B D

] [
εp0
εb0

]
(38)

Q =

{
Ehλ

2(1+ν)γxz , x ∈
[
−L2 , l1

]
∪
[
l2,

L
2

]
E(h−h1)λ
2(1+ν) γxz , x ∈ ]l1, l2[

, (39)

where A, B and D are the extension, coupling and bending coefficients, given
by

A =

{
Eh ,

[
−L2 , l1

]
∪
[
l2,

L
2

]
E(h− h1) , ]l1, l2[

(40)

B =

{
0 ,

[
−L2 , l1

]
∪
[
l2,

L
2

]
Eh1(h1−h)

2 , ]l1, l2[
(41)

D =

{
Eh3

12 ,
[
−L2 , l1

]
∪
[
l2,

L
2

]
E[h3+(h−2h1)

3]
24 , ]l1, l2[

(42)

The discontinuity in the cross section due to the localized change in the
beam thickness affects coefficients A, B and D. Actually, B would be zero in a
rectangular, homogeneous beam, and only appears in this formulation because
of the notch.

The equations of motion are obtained by applying the principle of virtual
work, according to which

δWin + δWV + δWex = 0, (43)

where δWin, δWV and δWex are, respectively, the virtual work that the inertia,
internal and external forces do under a virtual vector displacement δd:

δd =

 δuδw
δθ

 = Nδq. (44)

The virtual work of internal and inertia forces are respectively given by

δWV = −
∫
V

δ ε σ dV (45)

δWin = −
∫
V

ρ δ dT d̈ dV , (46)
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where d̈ is the vector containing components of acceleration. More details on
the above written virtual works can be found in [12]. The virtual work of the
external forces is given in [15].

Without damping, the equation of motion in time domain are:

M l 0 0
0 Mb 0
0 0 Mr

  q̈u(t)
q̈w(t)
q̈π(t)

 +

 0 0 M lr

0 0 0

M lrT 0 0

  q̈u(t)
q̈w(t)
q̈π(t)

 + (47)

+

K` 0 0
0 Kγ11

` Kγ12
`

0 Kγ21
` Kb

` +Kγ22
`

 qu(t)
qw(t)
qπ(t)

 +

 0 0 Klr
`

0 0 0

Klr
`
T

0 0

 qu(t)
qw(t)
qπ(t)

 =

 FEu (t)
FEq (t)

ME(t)

 ,

[
FEu (t), FEw (t),ME(t)

]T
is the vector of generalized external forces. Matrices

M and K` are, respectively, the mass and stiffness matrices. Superscripts l,
b, r and γ indicate, respectively, longitudinal, bending, cross section rotation
and shear effects. Superscript lr represents longitudinal-rotation coupling that
occurs due to damage and is reflected in the mass and linear stiffness matrix.
The mass and stiffness matrices are given in [12], the vector of generalized
external forces in [15].

Finally, introducing Rayleigh-type damping, with damping coefficients α
and β, and writing the equations of motion in a more condensed form, yields,

(M +Mc)q̈(t) + α (K` + Kc
` ) q̇(t) + β (M + Mc) q̇(t) + (K` + Kc

` ) q(t) = F (t). (48)

Matrices M c and Kc
` represent couplings introduced by the notch.

4.2 Simulation results

In this section, the discrete 2D Hopfield Neural Network (8), with y, A and θ
as defined in (26), is applied to detect damage in a beam. The vibration data
in (26) were obtained using the Timoshenko model described in subsection
4.1 for a beam with the following characteristics (before the damage occurs):
L = 0.5m, E = 71.72 × 109N/m2, I = 3.255 × 10−8m4, µ = 1.75 kg/m and
c = 1808.7N s/m2. Within this setting, the model initialising parameters are
θ1 = c

µ = 1033.5, θ2 = EI
µ = 1334.1 and θ3 = 1

µ = 0.5714. Then, damage was

simulated at t = 0.1 s, and, as explained in Section 4.1 (second paragraph),
was represented by an always open notch or indentation, with corresponding
mass and stiffness loss, which translated into a change in all parameters θ1,
θ2 and θ3. The beam was subjected to a harmonic excitation with amplitude
F = 1000N and frequency ω = 3214.87 rad/s.

The beam was spatially discretized in 27 equally spaced points xl = l∆x
with l = 0, . . . , 26. Moreover, in equation (8), N∗ was taken equal to 1 and
the weights αj(l) were defined as in [18], i.e., at the beam ends we took
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α−1(0) = 0

α0(0) = 26/27

α1(0) = 1/27

α−1(26) = 1/27

α0(26) = 26/27

α1(26) = 0

in the middle of the beam

α−1(l) = 0.5/27

α0(l) = 26/27 l = 1, . . . , 25

α1(l) = 0.5/27

and finally

αj(l) = 0 l < 0 or l > 26

taking into account that there is a finite number of discretization points in a
beam of limited length. Note that, for each point l = 0, . . . , 26, the sum of
the weights equals 1, and that more importance, corresponding to a weight of
26/27, is given to the data collected from that point, while less importance,
corresponding to a distributed weight of 1/27, is given to the data collected
from the neighbours of that point. Since in a realistic situation the real values of
the parameters are not known, instead of considering the parameter estimation
error, in order to analyze the performance of the damage identification method,
we considered at each discrete time instant k ≥ 0 the error measure

ECH(k) = max
l
‖y(l, k)−A(l, k)θ̂(l, k)‖∞ (49)

and computed the average ECH(k) of the errors ECH(0), . . . , ECH(k). In
the sequel, we examine the relative change in the average error from time k−1
to time k, given for k ≥ 1 by

er(k) =
ECH(k)− ECH(k − 1)

ECH(k − 1)
× 100% . (50)

Figure 3 shows the results for the 2D HNN proposed here. It also shows, for
comparison purposes, the results of a 1D HNN approach based in the work
presented in [6]. It can be seen that, when damage occurs at time t = 0.1 s, the
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Fig. 3 (a) Time evolution of the relative change in the average identification error; (b)
zoom around the time instant where damage occurs.

relative change in the average error is greater for the 2D HNN. This means
that our multidimensional approach presented here makes easier to detect
damage. Furthermore, it presents more stable results, as the relative change
in the average error does not oscillate after the initial identification phase,
contrary to what happens with the 1D HNN approach.

The 2D HNN proposed here can be used not only for damage detection
but also for damage localization. Figure 4 depicts the time/space evolution
of the θ1 estimate produced by the network. It can be seen where damage
occurs by observing where the peak in the parameter estimate occurs after the
initial identification phase. After a transient period which should be ignored
for damage detection purposes, as it corresponds to an initializing parameter
mismatch, the parameter estimates settles quite quickly, changes when damage
occurs, at time t = 0.1s, and settles again after some oscillation. If further
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damage occurs later on, a similar phenomenon will be observed. In this way,
multiples damages at different time instants can be detected.

(a)

(b)

Fig. 4 (a) Time/space evolution of a parameter estimate produced by the 2D HNN; (b)
zoom around the time instant where damage occurs.

Finally, note that the good results obtained by the 2D HNN were achieved
in a context where the beam displacement data was generated by a model dif-
ferent from the one on which the network is based. Moreover, the velocity and
acceleration data were contaminated with errors, since they were calculated
using numerical differentiation. For all this, the results suggest that the 2D
HNN deals well with a model mismatch and is robust to noise in the data.
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5 Conclusions

This paper presents a multidimensional neural network for mechanical beam
damage detection. The network organizes the data collected from the beam
based on the Euler-Bernoulli model for beam vibrations. In order to simulate
a mismatch between this model and reality, we test the network using data
from a different, more complex model, namely Timoshenko’s. The network
deals well with the mismatch and is robust to noise in the data. It enables not
only damage detection but also damage localization. The results are superior
to those of a unidimensional neural network approach. For all this, we feel
encouraged to incorporate the multidimensional neural network method in an
automatic system for online damage detection. Finally, we remark that this
method can be extended to nD processes with n > 2 (where, as here, one
of the variables is the time). This could, for instance, be useful for damage
detection in vibrating plates.
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