187 research outputs found

    Genetic analysis of rare disorders: Bayesian estimation of twin concordance rates

    Get PDF
    Twin concordance rates provide insight into the possibility of a genetic background for a disease. These concordance rates are usually estimated within a frequentistic framework. Here we take a Bayesian approach. For rare diseases, estimation methods based on asymptotic theory cannot be applied due to very low cell probabilities. Moreover, a Bayesian approach allows a straightforward incorporation of prior information on disease prevalence coming from non-twin studies that is often available. An MCMC estimation procedure is tested using simulation and contrasted with frequentistic analyses. The Bayesian method is able to include prior information on both concordance rates and prevalence rates at the same time and is illustrated using twin data on cleft lip and rheumatoid arthritis

    The heritability of BMI varies across the range of BMI-a heritability curve analysis in a twin cohort

    Get PDF
    Background The heritability of traits such as body mass index (BMI), a measure of obesity, is generally estimated using family and twin studies, and increasingly by molecular genetic approaches. These studies generally assume that genetic effects are uniform across all trait values, yet there is emerging evidence that this may not always be the case. Method/Subjects This paper analyzes twin data using a recently developed measure of heritability called the heritability curve. Under the assumption that trait values in twin pairs are governed by a flexible Gaussian mixture distribution, heritability curves may vary across trait values. The data consist of repeated measures of BMI on 1506 monozygotic (MZ) and 2843 like-sexed dizygotic (DZ) adult twin pairs, gathered from multiple surveys in older Finnish Twin Cohorts. Results The heritability curve and BMI value-specific MZ and DZ pairwise correlations were estimated, and these varied across the range of BMI. MZ correlations were highest at BMI values from 21 to 24, with a stronger decrease for women than for men at higher values. Models with additive and dominance effects fit best at low and high BMI values, while models with additive genetic and common environmental effects fit best in the normal range of BMI. Conclusions We demonstrate that twin and molecular genetic studies need to consider how genetic effects vary across trait values. Such variation may reconcile findings of traits with high heritability and major differences in mean values between countries or over time.Peer reviewe

    Theory and Practice in Quantitative Genetics

    Get PDF
    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each, we show how the theoretical biometrical model can be translated into algebraic equations that may be used to generate scripts for statistical genetic software packages, such as Mx, Lisrel, SOLAR, or MERLIN. For using the former program a web-library (available from http://www.psy.vu.nl/mxbib) has been developed of freely available scripts that can be used to conduct all genetic analyses described in this paper

    Rokhlin Dimension for Flows

    Get PDF
    This research was supported by GIF Grant 1137/2011, SFB 878 Groups, Geometry and Actions and ERC Grant No. 267079. Part of the research was conducted at the Fields institute during the 2014 thematic program on abstract harmonic analysis, Banach and operator algebras, and at the Mittag–Leffler institute during the 2016 program on Classification of Operator Algebras: Complexity, Rigidity, and Dynamics.Peer reviewedPostprin

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Parental longevity correlates with offspring’s optimism in two cohorts of community-dwelling older subjects

    Get PDF
    Dispositional optimism and other positive personality traits have been associated with longevity. Using a familial approach, we investigated the relationship between parental longevity and offspring’s dispositional optimism among community-dwelling older subjects. Parental age of death was assessed using structured questionnaires in two different population-based samples: the Leiden Longevity Study (n = 1,252, 52.2% female, mean age 66 years, SD = 4) and the Alpha Omega Trial (n = 769, 22.8% female, mean age 69 years, SD = 6). Adult offspring’s dispositional optimism was assessed with the Life Orientation Test—Revised (LOT-R). The association between parental age of death and levels of optimism in the offspring was analysed using linear regression analysis within each sample and a meta-analysis for the overall effect. In both samples, the parental mean age of death was positively associated with optimism scores of the offspring. The association remained significant after adjustment for age, gender, living arrangement, body mass index, smoking status, education and self-rated health of the offspring. The pooled B coefficient (increase in LOT-R score per 10-year increase in parental mean age of death) was 0.30 (SE = 0.08, p < 0.001). In conclusion, parental longevity was positively associated with optimism in adult offspring, suggesting a partial linked heritability of longevity and optimism

    A polymorphic variant of the insulin-like growth factor 1 (IGF-1) receptor correlates with male longevity in the Italian population: a genetic study and evaluation of circulating IGF-1 from the "Treviso Longeva (TRELONG)" study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An attenuation of the insulin-like growth factor 1 (IGF-1) signaling has been associated with elongation of the lifespan in simple metazoan organisms and in rodents. In humans, IGF-1 level has an age-related modulation with a lower concentration in the elderly, depending on hormonal and genetic factors affecting the IGF-1 receptor gene (<it>IGF-1R</it>).</p> <p>Methods</p> <p>In an elderly population from North-eastern Italy (<it>n </it>= 668 subjects, age range 70–106 years) we investigated the <it>IGF-1R </it>polymorphism G3174A (<it>rs2229765</it>) and the plasma concentration of free IGF-1. Frequency distributions were compared using χ<sup>2</sup>-test "Goodness of Fit" test, and means were compared by one-way analysis of variance (ANOVA); multiple regression analysis was performed using JMP7 for SAS software (SAS Institute, USA). The limit of significance for genetic and biochemical comparison was set at α = 0.05.</p> <p>Results</p> <p>Males showed an age-related increase in the A-allele of <it>rs2229765 </it>and a change in the plasma level of IGF-1, which dropped significantly after 85 years of age (85+ group). In the male 85+ group, A/A homozygous subjects had the lowest plasma IGF-1 level. We found no clear correlation between <it>rs2229765 </it>genotype and IGF-1 in the females.</p> <p>Conclusion</p> <p>These findings confirm the importance of the <it>rs2229765 </it>minor allele as a genetic predisposing factor for longevity in Italy where a sex-specific pattern for IGF-1 attenuation with ageing was found.</p

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer
    corecore