2,729 research outputs found

    Dissipative Transport of a Bose-Einstein Condensate

    Full text link
    We investigate the effects of impurities, either correlated disorder or a single Gaussian defect, on the collective dipole motion of a Bose-Einstein condensate of 7^7Li in an optical trap. We find that this motion is damped at a rate dependent on the impurity strength, condensate center-of-mass velocity, and interatomic interactions. Damping in the Thomas-Fermi regime depends universally on the disordered potential strength scaled to the condensate chemical potential and the condensate velocity scaled to the peak speed of sound. The damping rate is comparatively small in the weakly interacting regime, and the damping in this case is accompanied by strong condensate fragmentation. \textit{In situ} and time-of-flight images of the atomic cloud provide evidence that this fragmentation is driven by dark soliton formation.Comment: 14 pages, 20 figure

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    Application of SWAT Hydrologic Model for TMDL Development on Chapel Branch Creek Watershed, SC

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Techniques for direct experimental evaluation of structure-transport relationships in disordered porous solids

    Get PDF
    Determining structure-transport relationships is critical to optimising the activity and selectivity performance of porous pellets acting as heterogeneous catalysts for diffusion-limited reactions. For amorphous porous systems determining the impact of particular aspects of the void space on mass transport often requires complex characterization and modelling steps to deconvolve the specific influence of the feature in question. These characterization and modelling steps often have limited accuracy and precision. It is the purpose of this work to present a case-study demonstrating the use of a more direct experimental evaluation of the impact of pore network features on mass transport. The case study evaluated the efficacy of the macropores of a bidisperse porous foam structure on improving mass transport over a purely mesoporous system. The method presented involved extending the novel integrated gas sorption and mercury porosimetry method to include uptake kinetics. Results for the new method were compared with those obtained by the alternative NMR cryodiffusometry technique, and found to lead to similar conclusions. It was found that the experimentally-determined degree of influence of the foam macropores was in line with expectations from a simple resistance model for a disconnected macropore network

    Strain Relaxation Mechanisms and Local Structural Changes in Si_{1-x}$Ge_{x} Alloys

    Full text link
    In this work, we address issues pertinent to the understanding of the structural and electronic properties of Si_{1-x} Ge_{x}alloys, namely, (i) how does the lattice constant mismatch between bulk Si and bulk Ge manifests itself in the alloy system? and (ii) what are the relevant strain release mechanisms? To provide answers to these questions, we have carried out an in-depth study of the changes in the local geometric and electronic structures arising from the strain relaxation in Si_{1-x} Ge_{x} alloys using an ab initio molecular dynamics scheme. The optimized lattice constant, while exhibiting a general trend of linear dependence on the composition (Vegard's law), shows a negative deviation from Vegard's law in the vicinity of x=0.5. We delineate the mechanisms responsible for each one of the above features. We show that the radial-strain relaxation through bond stretching is responsible for the overall trend of linear dependence of the lattice constant on the composition. On the other hand, the negative deviation from Vegard's law is shown to arise from the angular-strain relaxation.Comment: 21 pages, 7 figure

    Creating Digital Coastal Watersheds: The Remote Data Acquisition Network at Bannockburn Plantation, Georgetown County, SC

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Nonequilibrium molecular dynamics simulation of rapid directional solidification

    Full text link
    We present the results of non-equilibrium molecular dynamics simulations for the growth of a solid binary alloy from its liquid phase. The regime of high pulling velocities, VV, for which there is a progressive transition from solute segregation to solute trapping, is considered. In the segregation regime, we recover the exponential form of the concentration profile within the liquid phase. Solute trapping is shown to settle in progressively as VV is increased and our results are in good agreement with the theoretical predictions of Aziz [J. Appl. Phys. {\bf 53}, 1158 (1981)]. In addition, the fluid advection velocity is shown to remain directly proportional to VV, even at the highest velocities considered here (V≃10V\simeq10ms−1^{-1}).Comment: Submitted to Phys. Rev.
    • …
    corecore