604 research outputs found

    Solving the Coulomb scattering problem using the complex scaling method

    Full text link
    Based on the work of Nuttall and Cohen [Phys. Rev. {\bf 188} (1969) 1542] and Resigno et al{} [Phys. Rev. A {\bf 55} (1997) 4253] we present a rigorous formalism for solving the scattering problem for long-range interactions without using exact asymptotic boundary conditions. The long-range interaction may contain both Coulomb and short-range potentials. The exterior complex scaling method, applied to a specially constructed inhomogeneous Schr\"odinger equation, transforms the scattering problem into a boundary problem with zero boundary conditions. The local and integral representations for the scattering amplitudes have been derived. The formalism is illustrated with numerical examples.Comment: 3 pages, 3 figure

    Silvopastoral Agroforestry in Upland and Lowland UK Grassland: Tree Growth and Animal Performance

    Get PDF
    Trees, individually protected from herbivore damage using plastic shelters, were planted at two densities (100 and 400 stems/ha) into sheepgrazed pasture in upland and lowland UK grassland sites in 1988. Tree and animal performance were compared with conventional forestry (no sheep) and pasture (no tree) systems. Effects on tree growth and survival are highly species and site dependent although some treatment effects did emerge. Tree shelters encouraged rapid early height growth compared to forestry controls although in some cases tree form was also adversely affected. Generally tree performance within agroforestry treatments was better at the higher planting density. Eight years after planting there has been no reduction in animal production despite interception of up to 10% of total photosynthetically active radiation by the developing tree canopy

    The weak localization for the alloy-type Anderson model on a cubic lattice

    Full text link
    We consider alloy type random Schr\"odinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter λ\lambda is small, for the energies ECλ2E \le -C \lambda^2.Comment: 45 pages, 2 figures. To appear in J. Stat. Phy

    Lieb-Thirring Bound for Schr\"odinger Operators with Bernstein Functions of the Laplacian

    Get PDF
    A Lieb-Thirring bound for Schr\"odinger operators with Bernstein functions of the Laplacian is shown by functional integration techniques. Several specific cases are discussed in detail.Comment: We revised the first versio

    Singular Modes of the Electromagnetic Field

    Get PDF
    We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.Comment: 14 pages, no figure

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances

    Sufficient conditions for two-dimensional localization by arbitrarily weak defects in periodic potentials with band gaps

    Full text link
    We prove, via an elementary variational method, 1d and 2d localization within the band gaps of a periodic Schrodinger operator for any mostly negative or mostly positive defect potential, V, whose depth is not too great compared to the size of the gap. In a similar way, we also prove sufficient conditions for 1d and 2d localization below the ground state of such an operator. Furthermore, we extend our results to 1d and 2d localization in d dimensions; for example, a linear or planar defect in a 3d crystal. For the case of D-fold degenerate band edges, we also give sufficient conditions for localization of up to D states.Comment: 9 pages, 3 figure

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    Spectral Analysis for Matrix Hamiltonian Operators

    Full text link
    In this work, we study the spectral properties of matrix Hamiltonians generated by linearizing the nonlinear Schr\"odinger equation about soliton solutions. By a numerically assisted proof, we show that there are no embedded eigenvalues for the three dimensional cubic equation. Though we focus on a proof of the 3d cubic problem, this work presents a new algorithm for verifying certain spectral properties needed to study soliton stability. Source code for verification of our comptuations, and for further experimentation, are available at http://www.math.toronto.edu/simpson/files/spec_prop_code.tgz.Comment: 57 pages, 22 figures, typos fixe
    corecore