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Abstract

Path integral representations for generalized Schrödinger operators obtained un-
der a class of Bernstein functions of the Laplacian are established. The one-to-one
correspondence of Bernstein functions with Lévy subordinators is used, thereby
the role of Brownian motion entering the standard Feynman-Kac formula is taken
here by subordinate Brownian motion. As specific examples, fractional and rela-
tivistic Schrödinger operators with magnetic field and spin are covered. Results
on self-adjointness of these operators are obtained under conditions allowing for
singular magnetic fields and singular external potentials as well as arbitrary in-
teger and half-integer spin values. This approach also allows to propose a notion
of generalized Kato class for which an Lp-Lq bound of the associated general-
ized Schrödinger semigroup is shown. As a consequence, diamagnetic and energy
comparison inequalities are also derived.
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1 Introduction

1.1 Context and motivation

Feynman-Kac-type formulae proved to be a useful device in the analysis of spectral

properties of a wide class of self-adjoint operators. Besides their prolific uses in the

physics literature, functional integration poses remarkable new mathematical problems

which can be addressed in terms of modern stochastic analysis.

The Feynman-Kac formula is a functional integral representation of the kernel of

the semigroup generated by the Schrödinger operator

H =
1

2
p2 + V, (1.1)

for which it was originally derived. Here p = −i∇ is the momentum operator and

V is a real-valued potential. The Laplacian gives rise to an integral representation

of the kernel of e−tH in terms of the Wiener measure, while V introduces a density

with respect to it. This implies that the ground state and various other properties of

H can be analyzed by running a Brownian motion under the potential V . Standard

references on applications to the spectral analysis of Schrödinger operators include

[Lie73, Lie80, Shi87, Sim82], with updated bibliography in [Sim04]. We also refer to

[DC00] for an approach with the Feynman-Kac formula. While functional integration

can be extended to include several other operators also covering quantum field models

(see [LHB09] and references therein), the analysis based on random processes having

almost surely continuous paths remained a basic feature.

In the mathematical physics literature there appear to be relatively few systematic

attempts in going beyond continuous paths to replace them with càdlàg paths (right-

continuous with left limits), also allowing jump discontinuities. On the other hand, such

more general Lévy processes than Brownian motion prove to be useful in describing

important features such as spin in terms of path measures. Another source of problems

leading to paths with jump discontinuities are models featuring fractional Laplacians.

The aim of the present paper is to construct path integral representations for gener-

alized Schrödinger operators including both non-relativistic and relativistic Schrödinger

operators with vector potentials and spin. We propose a thorough study of this prob-

lem, extending the methods developed in [HL08] to the case of Lévy processes with

càdlàg paths.

By a generalized Schrödinger operator here we mean a Schrödinger operator in

which the Laplacian is replaced by a suitable pseudo-differential operator. Namely,
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instead of the operator
1

2
(σ · (p− a))2 + V (1.2)

studied in [HL08], where σ = (σ1, σ2, σ3) are the Pauli matrices and a is a vector

potential, we consider a class of general self-adjoint operators of the form

Ψ

(
1

2
(σ · (p− a))2

)
+ V, (1.3)

where Ψ is a Bernstein function on the positive semi-axis (see below). In particular,

this class includes not only relativistic Schrödinger operators√
(σ · (p− a))2 +m2 −m+ V (1.4)

but also more general fractional Schrödinger operators(
1

2
(σ · (p− a))2

)α/2
+ V, (1.5)

with α ∈ (0, 2). The vector potential plays the role of magnetic field in appropriate

contexts, however, we will use this terminology for all cases we consider, even when

they may have other interpretations.

The application of functional integral techniques to relativistic Schrödinger opera-

tors, without magnetic field or spin, has been earlier on addressed in [CMS90]. The

process involved is closely related to 1/2-stable processes, which can be understood

in terms of a first hitting time process of Brownian motion. In the interesting papers

[ALS83, ARS91] a path integral for relativistic Schrödinger operators with vector po-

tential and spin 1/2 is presented, however, in a non-rigorous language. A functional

integral representation also has been established for the Schrödinger semigroup with

vector potential in [ITa86], applied in [Ich87] and completed in [Ich94], where, however,

the operator concerned was a pseudo-differential operator associated with the symbol

of the classical relativistic Hamiltonian defined through Weyl quantization. It should

be noted that the terms in (1.3)–(1.5) involving a vector potential cannot be defined as

pseudo-differential operators associated with simple and plain symbols. A further step

has been made by addressing various problems of potential theory and heat kernel es-

timates of more general α-stable processes [BB99, BJ07, BKM06, CS97, Ryz02, KS06,

GR07, B09, KL10]; see also the influential early work [Bak87] involving the Cauchy

process. Such processes relate with fractional Schrödinger operators(
1

2
p2

)α/2
+ V, 0 < α < 2, (1.6)
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and are motivated by further models of physics, chemistry, biology and, more recently,

financial mathematics [BG90, BBACT02, EK95, MK04].

Fractional Schrödinger operators and stable processes provide just one special case

of a sensible class of extensions. In the present paper we consider generalized Schrö-

dinger operators obtained as Bernstein functions of the Laplacian to which we add an

external potential V and, in various versions, a vector potential and a contribution from

a spin operator. In a sense, this is the greatest desirable generality as Bernstein func-

tions with vanishing right limits at the origin stand in a one-to-one correspondence with

Lévy subordinators. So our contribution may be more to mathematics than to physics.

However, as will be seen in this paper, it is more natural to consider the path integral

for generalized Schrödinger operators than the relativistic Schrödinger operators with

spin themselves. Subordinators are random processes with jump discontinuities and

can be uniquely described by specifying two parameters, the Lévy measure account-

ing for the jumps, and the drift function accounting for the continuous component of

the paths. Given a Bernstein function Ψ and a generalized Schrödinger operator HΨ

thereby obtained, the properties of the semigroup e−tH
Ψ

can now be analyzed in terms

of subordinate Brownian motion BTΨ
t

. Here TΨ
t is the subordinator uniquely associated

with Ψ. Roughly speaking, BTΨ
t

is a càdlàg process which samples Brownian paths at

random times distributed by the law of TΨ
t .

1.2 Main results

Throughout this paper we will use the following conditions on the vector potential.

Assumption 1.1 The vector potential a = (a1, ..., ad) is a vector-valued function

whose components aµ, µ = 1, ..., d, are real-valued functions. Furthermore, we con-

sider the following regularity conditions:

(A1) a ∈ (L2
loc(Rd))d.

(A2) a ∈ (L2
loc(Rd))d and ∇ · a ∈ L1

loc(Rd).

(A3) a ∈ (L4
loc(Rd))d and ∇ · a ∈ L2

loc(Rd).

(A4) d = 3, a ∈ (L4
loc(R3))3, ∇ · a ∈ L2

loc(R3) and ∇× a ∈ (L2
loc(R3))3.

Since we discuss several variants of Schrödinger operators, different by whether they

do or do not include spin, it is appropriate to explain here the notation. We define the

spinless operator through a quadratic form for a satisfying (A1) and denote it by

h =
1

2
(p− a)2 (with no spin). (1.7)



5

We also define a Schrödinger operator with spin 1/2 through a quadratic form and will

be denote it by

h1/2 =
1

2
(σ · (p− a))2 (with spin). (1.8)

Using a suitable unitary map, we transform h1/2 on the space L2(R3;C2) = L2(R3)⊗C2

to a self-adjoint operator hZ2 on L2(R3 × Z2). Here Z2 = {−1, 1} describes the state

space of a two-valued spin variable. Furthermore, we generalize spin from Z2 to Zp and

denote the so obtained Schrödinger operator by

hZp (with generalized spin) (1.9)

acting on L2(Rd×Zp), for d ≥ 1 and p ≥ 2. The relativistic versions of (1.7) and (1.8)

will be denoted by

hrel =
√

(p− a)2 +m2 −m, m ≥ 0,

hrel
1/2 =

√
(σ · (p− a))2 +m2 −m, m ≥ 0.

(1.10)

In this paper we will consider generalized versions of (1.10). Let Ψ be a Bernstein

function. Our main objects are

HΨ = Ψ(h) + V (with no spin),

HΨ
Zp = Ψ(hZp) + V (with generalized spin).

(1.11)

In particular,

Ψ(u) =
√

2u+m2 −m

corresponds to (1.10). Under Assumptions (A2) (resp. (A3)), we will show that

C∞0 (Rd) is a form core (resp. operator core) of both Ψ(h) and Ψ(hZp). This is the

content of Theorem 3.3 below.

The key results of this paper are the functional integral representations of e−tH
Ψ

and

e
−tHΨ

Zp derived under Assumption (A2) for bounded potentials V . They are presented

in Theorems 3.8 and 5.10, respectively. These are then further generalized to more

singular potentials in Theorems 3.14 and 5.14. Recall that the standard Feynman-

Kac-Itô formula says that

(f, e−t(h+V )g) =

∫
Rd
dxExP

[
f(B0)g(Bt)e

−i
∫ t
0 a(Bs)◦dBse−

∫ t
0 V (Bs)ds

]
, (1.12)

with d-dimensional Brownian motion (Bt)t≥0 on Wiener space (ΩP ,FP , P ), where the

stochastic integral in the exponent is to be interpreted as a Stratonovich integral. For

HΨ = Ψ(h) + V this formula modifies to (see Theorem 3.14 below)

(f, e−t(Ψ(h)+V )g) =

∫
Rd
dxEx,0P×ν

[
f(B0)g(BTΨ

t
)e−i

∫ TΨ
t

0 a(Bs)◦dBse
−
∫ t
0 V (B

TΨ
s

)ds

]
, (1.13)
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where TΨ
t is the Lévy subordinator on a probability space (Ων ,Fν , ν) associated with

Ψ. In particular, it should be noted that the integrands change as

exp

(
−i
∫ t

0

a(Bs) ◦ dBs

)
→ exp

(
−i
∫ TΨ

t

0

a(Bs) ◦ dBs

)
and

exp

(
−
∫ t

0

V (Bs)ds

)
→ exp

(
−
∫ t

0

V (BTΨ
s

)ds

)
.

A similar situation occurs in the case including a generalized spin, see Theorem 5.14

below. By means of these formulae we are able to extend the definition of generalized

Schrödinger operators HΨ and HΨ
Zp to the case of external potentials having singulari-

ties.

Having the functional integral representations at hand allows us to construct a

strongly continuous symmetric Feynman-Kac semigroup for a large class of potentials

V which we call Ψ-Kato class. This will be dealt with in Theorem 4.8. Extension of

the standard Kato-class is also derived in e.g., [CMS90, Zha91] The generator of this

semigroup can be identified as a self-adjoint operator, which we denote by

KΨ (with Ψ-Kato class potential). (1.14)

This offers then a notion of generalized Schrödinger operator with vector potential for

Ψ-Kato potentials. As a further result, in Theorem 4.11 we show that the semigroup

e−tK
Ψ

is Lp-Lq bounded for 1 ≤ p ≤ q ≤ ∞.

Our results improve and generalize those of [BHL00, CMS90, ITa86, ALS83, ARS91,

Sim82, GV81]. Further applications to relativistic quantum field theory are discussed

in [HS09, Lor09a, Lor09b].

The paper is organized as follows. In Section 2 we discuss the details of the rela-

tionship between Bernstein functions Ψ and Lévy subordinators (TΨ
t )t≥0. In Section 3

we consider the spinless case. We establish the functional integral representation for

their semigroup and obtain diamagnetic inequalities. Furthermore, we show essential

self-adjointness of Ψ(h) on C∞0 (Rd). In Section 4, we define the space of Ψ-Kato class

potentials and discuss their relationship with the Lévy measure of the associated sub-

ordinators. In addition we prove that the generalized Schrödinger semigroups obtained

for the Ψ-Kato class is Lp-Lq bounded for 1 ≤ p ≤ q ≤ ∞. In Section 5 we consider

generalized Schrödinger operators with spin. We extend ±1 spins to spins of p possible

orientations by describing them in terms of the cyclic group of the pth roots of unity.

This gives rise to a random process driven by a weighted sum of p independent Poisson

variables of intensity 1. As a corollary, we derive diamagnetic inequalities.
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2 Bernstein functions and Lévy subordinators

We start by considering some basic facts on Bernstein functions and their connection

with subordinators. For standard definitions and results on Bernstein functions we

refer to [Boc55, BF73, SSV10], for Lévy processes to [Sat99], to [Ber99] for a detailed

study on subordinators, and to [Huf69] for details on subordinate Brownian motion.

Bernstein functions appear in the analysis of convolution semigroups, in particular

they are a key concept in Bochner’s theory of subordination.

Definition 2.1 (Bernstein function) Let

B =

{
f ∈ C∞((0,∞))

∣∣∣∣ f(x) ≥ 0 and (−1)n
(
dnf

dxn

)
(x) ≤ 0 for all n = 1, 2, ...,

}
.

An element of B is called a Bernstein function. We also define the subclass

B0 =

{
f ∈ B

∣∣∣∣ lim
u→0+

f(u) = 0

}
.

Bernstein functions are positive, increasing and concave. B is a convex cone con-

taining the nonnegative constants. Examples of functions in B0 include Ψ(u) = cuα,

c ≥ 0, 0 < α ≤ 1, and Ψ(u) = 1− e−au, a ≥ 0.

A real-valued function f on (0,∞) is a Bernstein function if and only if gt = e−tf is

a completely monotone function for all t > 0, i.e., exactly when (−1)n
dngt
dxn

≥ 0, for all

integers n ≥ 0. On the other hand, a result by Bernstein says that a function is com-

pletely monotone if and only if it is the Laplace transform of a positive measure, which

for each such function is unique. This leads to the following integral representation of

Bernstein functions.

Definition 2.2 (Class L ) Let L be the set of Borel measures λ on R \ {0} such

that

(1) λ((−∞, 0)) = 0;

(2)

∫
R\{0}

(y ∧ 1)λ(dy) <∞.

Note that each λ ∈ L satisfies that
∫
R\{0}(y

2 ∧ 1)λ(dy) < ∞ so that λ is a Lévy

measure.

Denote R+ = [0,∞). In the following proposition we give the integral representation

of Bernstein functions with vanishing right limits at the origin.
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Proposition 2.3 For every Bernstein function Ψ ∈ B0 there exists (b, λ) ∈ R+ ×L

such that

Ψ(u) = bu+

∫ ∞
0

(1− e−uy)λ(dy). (2.1)

Conversely, the right hand side of (2.1) is in B0 for each pair (b, λ) ∈ R+ ×L .

For a given Ψ ∈ B0, the constant b is uniquely determined by b = limu→∞Ψ(u)/u.

Moreover, since dΨ
du

= b +
∫∞

0
ye−yuλ(dy) and dΨ

du
is a completely monotone function,

the measure λ is also uniquely determined; for details, see [BF73, Theorem 9.8]. Thus

the map B0 → R+ × L , Ψ 7→ (b, λ) with Ψ and (b, λ) as in (2.1) is a one-to-one

correspondence.

Next we consider a probability space (Ων ,Fν , ν) given and the following special

class of Lévy processes.

Definition 2.4 (Lévy subordinator) A random process (Tt)t≥0 on (Ων ,Fν , ν) is

called a (Lévy) subordinator whenever

(1) (Tt)t≥0 is a Lévy process starting at 0, i.e., ν(T0 = 0) = 1;

(2) Tt is almost surely non-decreasing in t.

Subordinators have thus independent and stationary increments, almost surely no neg-

ative jumps, and are of bounded variation. These properties also imply that they are

Markov processes.

Let S denote the set of subordinators on (Ων ,Fν , ν). In what follows we denote

expectation by Exm[· · · ] =
∫
· · · dmx with respect to the path measure mx of a process

starting at x.

Proposition 2.5 Let Ψ ∈ B0 or, equivalently, a pair (b, λ) ∈ R+×L be given. Then

there exists a unique (Tt)t≥0 ∈ S such that

E0
ν [e
−uTt ] = e−tΨ(u). (2.2)

Conversely, let (Tt)t≥0 ∈ S . Then there exists Ψ ∈ B0, i.e., a pair (b, λ) ∈ R+ ×L

such that (2.2) is satisfied.

In particular, (2.1) coincides with the Lévy-Khintchine formula for Laplace exponents

of subordinators.

By the above there is a one-to-one correspondence between B0 and S , or equiva-

lently, between B0 and R+ ×L . For clarity, we will use the notation TΨ
t for the Lévy

subordinator associated with Ψ ∈ B0.
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Example 2.6 (Stable subordinator) Let b = 0, 0 < α < 2 and λ ∈ L be defined

by

λ(dy) =
α/2

Γ(1− α/2)

1(0,∞)(y)

y1+α/2
dy,

where Γ denotes the Gamma function. Then Ψ(u) = uα/2 ∈ B0 and the corresponding

subordinator TΨ
t is given by

E0
ν [e
−uTΨ

t ] = e−tu
α/2

.

Example 2.7 (First hitting time) Since Ψ(u) =
√

2u+m2 −m ∈ B0 for m ≥ 0,

there exists TΨ
t ∈ S such that

E0
ν [e
−uTΨ

t ] = exp
(
−t(
√

2u+m2 −m)
)
.

This case is thus related to the one-dimensional 1/2-stable process and it is known that

the corresponding subordinator TΨ
t can be represented as the first hitting time process

TΨ
t = inf{s > 0 |Bs +ms = t} (2.3)

for one-dimensional Brownian motion (Bt)t≥0. In this case, moreover, the distribution

ρ(·, t) on R also is known exactly to be [App09]

ρ(r, t) =
t√

2πr3
emt exp

(
−1

2

(
t2

r
+m2r

))
1[0,∞)(r), m ≥ 0. (2.4)

3 Spinless case

3.1 Generalized Schrödinger operators with no spin

Now we define the class of generalized Schrödinger operators on L2(Rd), which we

consider in this paper. In order to cover interactions with a magnetic field we add a

vector potential to the momentum operator. Let ∂xµ : D ′(Rd) → D ′(Rd), µ = 1, ..., d,

denote the derivative on the Schwartz distribution space D ′(Rd) relative to the µth

coordinate. With the notation p = −i∇ and ∇ = (∂x1 , . . . , ∂xd), the Schrödinger

operator with vector potential a is formally given by 1
2
(p− a)2. We will define it as a

self-adjoint operator rigorously through a quadratic form.

Let Dµ = pµ − aµ, µ = 1, ..., d, where pµ = −i∂xµ . Define the quadratic form

q(f, g) =
d∑

µ=1

(Dµf,Dµg) (3.1)

with domain

Q(q) =
{
f ∈ L2(Rd) |Dµf ∈ L2(Rd), µ = 1, ..., d

}
. (3.2)



10

It can be shown that, under Assumption (A1), the subspace Q(q) is complete with

respect to the norm ‖f‖q =
√
q(f, f) + ‖f‖2, f ∈ Q(q). Thus q is a non-negative

closed form and there exists a unique self-adjoint operator h satisfying

(hf, g) = q(f, g), f ∈ D(h), g ∈ Q(q), (3.3)

with domain

D(h) =
{
f ∈ Q(q) | q(f, ·) ∈ L2(Rd)

′
}
. (3.4)

The self-adjoint operator h is our main object in this section. We summarize some

facts about the form core and operator core of h [LS81].

Proposition 3.1 (1) Let Assumption (A1) be satisfied. Then C∞0 (Rd) is a form core

of h. (2) Let Assumption (A3) be satisfied. Then C∞0 (Rd) is an operator core for h.

Note that in case (2) of Proposition 3.1,

hf =
1

2
p2f − a · pf +

(
1

2
a · a− (p · a)

)
f.

Definition 3.2 (Generalized Schrödinger operator with vector potential and

bounded V ) Let Ψ ∈ B0 and take Assumption (A1). Whenever V is a real-valued

bounded multiplication operator we call

HΨ = Ψ(h) + V (3.5)

generalized Schrödinger operator with vector potential a.

Note that Ψ ≥ 0 and Ψ(h) is defined through the spectral projection of the self-adjoint

operator h. Furthermore, HΨ is self-adjoint on the domain D(Ψ(h)) as V is bounded.

3.2 Essential self-adjointness

Theorem 3.3 Take Ψ ∈ B0.

(1) Let Assumption (A3) be satisfied. Then C∞0 (Rd) is an operator core of Ψ(h).

(2) Let Assumption (A1) be satisfied. Then C∞0 (Rd) is a form core of Ψ(h).

Proof. (1) Recall the representation (2.1). Since we have
∫ 1

0
yλ(dy) < ∞ and∫∞

1
λ(dy) < ∞ by Definition 2.2, there exist non-negative constants c1 and c2 such

that Ψ(u) ≤ c1u+ c2 for all u ≥ 0. This gives the bound

‖Ψ(h)f‖ ≤ c1‖hf‖+ c2‖f‖ (3.6)
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for all f ∈ D(h). Hence it can be proven that C∞0 (Rd) is contained in D(Ψ(h)) and

(Ψ(h) + 1)C∞0 (Rd) is dense. Then (1) follows.

(2) Note that ‖Ψ(h)1/2f‖2 ≤ c1‖h1/2f‖2 + c2‖f‖2 for f ∈ Q(h) = D(h1/2), and

C∞0 (Rd) is contained in Q(Ψ(h)) = D(Ψ(h)1/2). Since Ψ(h)1/2 + 1 has also bounded

inverse, it is seen by the same argument as above that C∞0 (Rd) is a core of Ψ(h)1/2 or

a form core of Ψ(h). qed

3.3 Singular magnetic fields

Before constructing a functional integral representation of e−th, we extend stochastic

integration to a class including L2
loc(Rd) functions since the vector potentials we consider

may be more singular than f satisfying (3.7) below.

Let (Bt)t≥0 denote d-dimensional Brownian motion starting at x ∈ Rd on standard

Wiener space (ΩP ,FP , P
x). Let f be a Cd-valued Borel measurable function on Rd

such that

ExP
[∫ t

0

|f(Bs)|2ds
]
<∞. (3.7)

Then the stochastic integral
∫ t

0
f(Bs) · dBs is defined as a martingale and the Itô

isometry

ExP

[∣∣∣∣∫ t

0

f(Bs) · dBs

∣∣∣∣2
]

= ExP
[∫ t

0

|f(Bs)|2ds
]

holds. However, vector potentials a under (A.1) of Assumption 1.1 do not necessarily

satisfy (3.7). As we show next, a stochastic integral can indeed be defined for a wider

class of functions than (3.7), and then
∫ t

0
f(Bs)·dBs will be defined as a local martingale

instead of a martingale. This extension will allow us to derive a functional integral

representation of e−th with a ∈
(
L2

loc(Rd)
)d

.

Consider the following class of vector valued functions on Rd.

Definition 3.4 We say that f = (f1, ..., fd) ∈ Eloc if and only if for almost every

x ∈ Rd, the equality

P x

(∫ t

0

|f(Bs)|2ds <∞
)

= 1 (3.8)

holds for all t ≥ 0.

Let Rn(ω) = n ∧ inf
{
t ≥ 0

∣∣∣∫ t0 |f(Bs(ω))|2ds ≥ n
}

be a sequence of stopping times

with respect to the natural filtration F P
t = σ(Bs, 0 ≤ s ≤ t). Let 1X denote the

indicator function on X. Define

fn(s, ω) = f(Bs(ω))1{Rn(ω)>s}(ω). (3.9)
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Each of these functions satisfies
∫∞

0
|fn(s, ω)|2ds =

∫ Rn
0
|fn(s, ω)|2ds ≤ n. In particular,

we have ExP
[∫ t

0
|fn|2ds

]
<∞ and thus

∫ t
0
fn · dBs is well defined. Moreover, it can be

seen that ∫ t∧Rm

0

fn(s, ω) · dBs =

∫ t

0

fm(s, ω) · dBs (3.10)

for m < n.

Definition 3.5 For f ∈ Eloc we define the integral∫ t

0

f(Bs) · dBs =

∫ t

0

fn(s, ω) · dBs, 0 ≤ t ≤ Rn. (3.11)

This definition is consistent with (3.10).

Lemma 3.6 The space Eloc has the properties below:

(1) Let f ∈ Eloc. Suppose that a sequence of step functions fn, n = 1, 2, ..., satisfies∫ t
0
|fn(Bs)− f(Bs)|2ds→ 0 in probability as n→∞. Then

lim
n→∞

∫ t

0

fn(Bs) · dBs =

∫ t

0

f(Bs) · dBs in probability.

(2) The following inclusion holds: (L2
loc(Rd))d ⊂ Eloc.

(3) Let a ∈
(
L2

loc(Rd)
)d

and ∇ · a ∈ L1
loc(Rd). Then∣∣∣∣∫ t

0

a(Bs) · dBs +
1

2

∫ t

0

∇ · a(Bs)ds

∣∣∣∣ <∞ almost surely.

Proof. Property (1) is standard: see e.g., [KS91, Proposition 2.26, p.147]. To see (2)

take f ∈
(
L2

loc(Rd)
)d

, then∫
dxExP

[∫ t

0

χξ(Bs)|f(Bs)|2ds
]
≤ t‖χξf‖2 <∞

and hence

ExP
[∫ t

0

χξ(Bs)|f(Bs)|2ds
]
<∞, ξ > 0, a.e.x ∈ Rd,

for any indicator function χξ of the set
∏d

µ=1[−ξ, ξ]. Hence
∫ t

0
χξ(Bs)|f(Bs)|2ds < ∞

for almost all ω. For each ω there exists b(ω) such that sup0≤s≤t |Bs(ω)| < b(ω). Take

ξ = ξ(ω) such that ξ > b(ω). Then
∫ t

0
|f(Bs(ω))|2ds =

∫ t
0
χξ(Bs(ω))|f(Bs(ω))|2ds <

∞, implying P x
(∫ t

0
|f(Bs)|2ds <∞

)
= 1, thus (2) follows. To see (3), note that

ExP
[∣∣∣∣∫ t

0

χξ(Bs)∇ · a(Bs)ds

∣∣∣∣] ≤ ∫ t

0

ds

∫
Rd
dyχξ(sy)|(∇ · a)(sy)|te

−|y|2/2

(2π)d/2
<∞
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for any indicator function χξ, whence it follows that
∣∣∣∫ t0 ∇ · a(Bs)ds

∣∣∣ < ∞ for almost

every ω. Thus (3) is obtained. qed

For a ∈ (L2
loc(Rd))d such that ∇ · a ∈ L1

loc(Rd), we denote∫ t

0

a(Bs) ◦ dBs =

∫ t

0

a(Bs) · dBs +
1

2

∫ t

0

∇ · a(Bs)ds.

Proposition 3.7 Under Assumption (A2) we have

(f, e−thg) =

∫
Rd
dxExP

[
f(B0)g(Bt)e

−i
∫ t
0 a(Bs)◦dBs

]
. (3.12)

Proof. Equality (3.12) is well known as the Feynman-Kac-Itô formula, which in

[Sim04, Theorem 15.5] was shown for a ∈ L2
loc(Rd), however, with ∇ · a = 0. We

provide a proof of (3.12) under Assumption (A2) for a self-contained presentation.

By using a mollifier we can take a sequence an ∈ (C∞0 (Rd))d, n = 1, 2, ..., such that

an → a in (L2
loc)

d and ∇· an → ∇· a in L1
loc as n→∞. Let χR = χ(x1/R) · · ·χ(xd/R),

R ∈ N, where χ ∈ C∞0 (R) such that 0 ≤ χ ≤ 1, χ(x) = 1 for |x| < 1 and χ(x) = 0

for |x| ≥ 2. Denote h = h(a). Since χRan → χRa as n → ∞ in (L2
loc)

d and χRa → a

as R → ∞ in (L2
loc)

d, it follows [LS81, Lemma 5 (3.17)] that e−th(χRan) → e−th(χRa)

as n → ∞ and e−th(χRa) → e−th(a) as R → ∞ in strong sense. Furthermore, (3.12)

remains true for a replaced by χRan ∈ (C∞0 (Rd))d.

Since χRan ∈ (C∞0 (Rd))d and χRan → χRa in (L2)d as n→∞, it follows that∫ t

0

χR(Bs)an(Bs) · dBs →
∫ t

0

χR(Bs)a(Bs) · dBs (3.13)

almost surely and since ∇ · (χRan) = (∇χR) · an + χR(∇ · an)→ (∇χR) · a+ χR(∇ · a)

in L1(Rd), it furthermore follows that∫ t

0

∇ · (χR(Bs)an(Bs))ds→
∫ t

0

(∇χR(Bs)) · a(Bs)ds+ χR(Bs)(∇ · a(Bs))ds (3.14)

strongly in L1(ΩP , dP
x). Thus there exists a subsequence n′ such that (3.13) and (3.14)

with n replaced by n′ hold almost surely. Hence (3.12) results by a limiting argument

for a replaced by χRa. Let

Ω+(R) = {ω ∈ ΩP | max
0≤s≤t,1≤µ≤d

Bµ
s (ω) ≤ R},

Ω−(R) = {ω ∈ ΩP | min
0≤s≤t,1≤µ≤d

Bµ
s (ω) ≥ −R}

and

I(R) =

∣∣∣∣∫ t

0

χR(Bs)a(Bs) · dBs −
∫ t

0

a(Bs) · dBs

∣∣∣∣ .
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We show that I(R) → 0 in probability as R → ∞. Note that the random variables

max0≤s≤tB
µ
s (ω) and min0≤s≤tB

µ
s (ω) have the same distribution and

P 0(Ω−(R)) = P 0(Ω+(R)) =
d∏

µ=1

P (|Bµ
t | ≤ R) =

(
2√
2πt

∫ R

0

e−y
2/(2t)dy

)d
.

Since χR(Bs) = 1 for all 0 ≤ s ≤ t on Ω+(R) ∩ Ω−(R), I(R) = 0 on Ω+(R) ∩ Ω−(R),

we have

P 0 (I(R) ≥ ε) = P 0(I(R) ≥ ε, Ω+(R)c ∪ Ω−(R)c) ≤ 2

(
2√
2πt

∫ ∞
R

e−y
2/(2t)dy

)d
.

Hence limR→∞ P
0(I(R) ≥ ε) = 0. Thus there exists a subsequence R′ such that∫ t

0
χR′(Bs)a(Bs) · dBs →

∫ t
0
a(Bs) · dBs almost surely as R′ →∞. In a similar way it is

seen that
∫ t

0
χR′′(Bs)∇ · a(Bs)ds→

∫ t
0
∇ · a(Bs)ds as R′′ →∞ almost surely for some

subsequence R′′ of R′. Moreover,∫ t

0

∇χR(Bs) · a(Bs)ds =
1

R

∫ t

0

∇χ(Bs/R) · a(Bs)ds→ 0 (3.15)

in probability, and then for some subsequence R′′′ of R′′, (3.15) converges to zero almost

surely. Thus
∫ t

0
χR′′′(Bs)a(Bs) ◦ dBs →

∫ t
0
a(Bs) ◦ dBs almost surely, and (3.12) holds

for any a satisfying Assumption (A2). qed

3.4 Functional integral representation

Now we turn to constructing a functional integral representation for generalized Schrö-

dinger operators including a vector potential term defined by (3.5).

A key element in our construction of a Feynman-Kac-type formula for e−tH
Ψ

is to

make use of a Lévy subordinator.

Theorem 3.8 Let Ψ ∈ B0 and V ∈ L∞(Rd). Under Assumption (A2) we have

(f, e−tH
Ψ

g) =

∫
Rd
dxEx,0P×ν

[
f(B0)g(BTΨ

t
)e−i

∫ TΨ
t

0 a(Bs)◦dBse
−
∫ t
0 V (B

TΨ
s

)ds

]
. (3.16)

Proof. We divide the proof into four steps. To simplify the notation, in this proof

we drop the superscript Ψ of the subordinator.

Note that (3.12) holds, since (A2) is assumed.

(Step 1) Suppose V = 0. Then we claim that

(f, e−tΨ(h)g) =

∫
Rd
dxEx,0P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBs

]
. (3.17)
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To prove (3.17) let Eh denote the spectral projection of the self-adjoint operator h.

Then

(f, e−tΨ(h)g) =

∫
Spec(h)

e−tΨ(u)d(f, Eh
ug). (3.18)

By inserting identity (2.2) in (3.18) we obtain

(f, e−tΨ(h)g) =

∫
Spec(h)

E0
ν [e
−Ttu]d(f, Eh

ug) = E0
ν

[
(f, e−Tthg)

]
.

Then by the Feynman-Kac-Itô formula for e−th we have

(f, e−tΨ(h)g) = E0
ν

[∫
Rd
dxExP

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBs

]]
,

thus (3.17) follows.

(Step 2) Let 0 = t0 < t1 < · · · < tn, f0, fn ∈ L2(Rd) and assume that fj ∈ L∞(Rd) for

j = 1, ..., n− 1. We claim that(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)
=

∫
Rd
dxEx,0P×ν

[
f0(B0)

(
n∏
j=1

fj(BTtj
)

)
e−i

∫ Tt
0 a(Bs)◦dBs

]
.

(3.19)

For a concise notation we write Gj(·) = fj(·)
(∏n

i=j+1 e
−(ti−ti−1)Ψ(h)fi

)
(·). By (Step 1)

the left hand side of (3.19) can be represented as∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1−t0
0 a(Bs)◦dBsG1(BTt1−t0

)

]
.

Let F P
t = σ(Bs, 0 ≤ s ≤ t) and F ν

t = σ(Ts, 0 ≤ s ≤ t) be the natural filtrations. An

application of the Markov property of Bt yields(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBsE0

νE
BTt1
P

[
f1(B0)e−i

∫ Tt2−t1
0 a(Bs)◦dBsG2(BTt2−t1

)

]]
=

∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBs

E0
ν

[
E0
P

[
f1(BTt1

)e
−i
∫ Tt2−t1+Tt1
Tt1

a(Bs)◦dBs
G2(BTt1+Tt2−t1

)

∣∣∣∣F P
Tt1

]]]
.

Hence we obtain(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBsE0

ν

[
f1(BTt1

)e
−i
∫ Tt2−t1+Tt1
Tt1

a(Bs)◦dBs
G2(BTt1+Tt2−t1

)

]]
.
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The right hand side above can be rewritten as∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)ETt1ν

[
e−i

∫ Tt2−t1
0 a(Bs)◦dBsG2(BTt2−t1

)

]]
.

Using now the Markov property of Tt we see that(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(h)fj

)

=

∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)E0
ν

[
e
−i
∫ Tt2
Tt1

a(Bs)◦dBs
G2(BTt2

)

∣∣∣∣F ν
t1

]]
=

∫
Rd
dxEx,0P×ν

[
f0(B0)e−i

∫ Tt1
0 a(Bs)◦dBsf1(BTt1

)e
−i
∫ Tt2
Tt1

a(Bs)◦dBs
G2(BTt2

)

]
.

By the above procedure we obtain (3.19).

(Step 3) Suppose now that 0 6= V ∈ L∞ and it is continuous; we prove (3.16) for such

V . Since HΨ is self-adjoint on D(Ψ(h)) ∩D(V ) the Trotter product formula holds:

(f, e−tH
Ψ

g) = lim
n→∞

(f, (e−(t/n)Ψ(h)e−(t/n)V )ng).

(Step 2) yields

(f, e−tH
Ψ

g) = lim
n→∞

∫
Rd
dxEx,0P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse

−
∑n
j=1(t/n)V (BTtj/n )

]
= r.h.s. (3.19)

Here we used that V (BTs(τ)(ω)) is continuous in s ∈ [0, t] for each (ω, τ) except for at

most finite points, since s 7→ BTs(τ)(ω) is continuous except for finite points. Therefore∑n
j=1

t
n
V (BTtj/n) →

∫ t
0
V (BTs)ds as n → ∞ for each path and exists as a Riemann

integral.

(Step 4) An application of the method in [Sim04, Theorem 6.2] will complete the proof

of Theorem 3.8. To do that, suppose that V ∈ L∞ and Vn = φ(x/n)(V ∗ jn), where

jn = ndφ(xn) with φ ∈ C∞0 (Rd) such that 0 ≤ φ ≤ 1,
∫
φ(x)dx = 1 and φ(0) = 1.

Then Vn(x) → V (x) almost everywhere. The function Vn is bounded and continuous,

moreover Vn(x) → V (x) as n → ∞ for x 6∈ N , where the Lebesgue measure of N is

zero. Notice that

Ex,0P,ν
[
1{BTs∈N }

]
= E0

ν

[
1{Tt>0}

∫
Rd

1N (y)P̂Tt(x− y)dy

]
+ 1N (x)E0

ν [1{Tt=0}] = 0

for x 6∈ N . Here P̂s(x) denotes the d-dimensional heat kernel:

P̂s(x) = (2πs)−d/2 exp(−|x|2/(2s)). (3.20)
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Therefore 0 =
∫ t

0
dsEx,0P,ν

[
1{BTs∈N }

]
= Ex,0P,ν

[∫ t
0
ds1{BTs∈N }

]
, for x 6∈ N , by the Fubini

theorem. Thus for every x 6∈ N , and almost every (ω, τ) ∈ ΩP × ΩN the measure of

{t ∈ [0,∞) |BTt(τ)(ω) ∈ N } is zero. Hence
∫ t

0
Vn(BTs)ds →

∫ t
0
V (BTs)ds as n → ∞

almost surely under P x × ν0, x 6∈ N , and∫
Rd
dxEx,0P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 Vn(BTs )ds

]
→
∫
Rd
dxEx,0P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
as n → ∞. On the other hand, e−t(Ψ(h)+Vn) → e−t(Ψ(h)+V ) strongly as n → ∞, since

Ψ(h) + Vn converges to Ψ(h) + V on the common domain D(Ψ(h)). Thus the theorem

follows. qed

Setting a = 0 and Ψ(u) = uα/2 for 0 < α < 2, we have the so-called fractional

Schrödinger operator with exponent α/2:

Hα =

(
1

2
p2

)α/2
+ V , (3.21)

for which Theorem 3.8 holds for example. For analytic results on fractional Schrödinger

operators for some potentials, e.g., ground state and heat kernel estimates, intrinsic

ultracontractivity, and related Gibbs measures see [KL10].

For a self-adjoint operator T which is bounded from below, we use the notation

ET = inf SpecT here and in Sections 5 and 6 below.

Corollary 3.9 (Diamagnetic inequality) Let Ψ ∈ B0, V ∈ L∞(Rd), and Assump-

tion (A2) hold. Then

|(f, e−tHΨ

g)| ≤ (|f |, e−t(Ψ(p2/2)+V )|g|) (3.22)

and the energy comparison inequality EΨ(p2/2)+V ≤ EHΨ holds.

Proof. By Theorem 3.8 we have

|(f, e−tHΨ

g)| ≤
∫
Rd
dxEx,0P×ν

[
|f(B0)||g(BTΨ

t
)|e−

∫ t
0 V (B

TΨ
s

)ds
]
.

The right hand side above coincides with that of (3.22), and EΨ(p2/2)+V ≤ EHΨ follows

directly from (3.22). qed

Remark 3.10 In Definitions 3.13 and 4.9 below, we shall define the generalized Schrödinger

operators with singular potential V and see them also satisfy diamagnetic inequalities.
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3.5 Singular external potentials

By making use of the functional integral representation obtained in the previous sub-

section we can now also consider more singular external potentials.

Theorem 3.11 Let Assumption (A2) be satisfied.

(1) Suppose that |V | is relatively form bounded with respect to Ψ(p2/2) with relative

bound b. Then |V | is also relatively form bounded with respect to Ψ(h) with a

relative bound not larger than b.

(2) Suppose that |V | is relatively bounded with respect to Ψ(p2/2) with relative bound

b. Then |V | is also relatively bounded with respect to Ψ(h) with a relative bound

not larger than b.

Proof. By virtue of Corollary 3.9 we have

|(f, e−tΨ(h)g)| ≤ (|f |, e−tΨ(p2/2)|g|). (3.23)

Then the proof is parallel with that of [Sim04, Theorem 15.10]. qed

Corollary 3.12 (1) Suppose that Assumption (A2) holds and let V be relatively bounded

with respect to Ψ(p2/2) with relative bound strictly smaller than one. Then Ψ(h) + V

is self-adjoint on D(Ψ(h)) and bounded from below. Moreover, it is essentially self-

adjoint on any core of Ψ(h). (2) Suppose furthermore that (A3) holds. Then C∞0 (Rd)

is an operator core of Ψ(h) + V .

Proof. (1) By (2) of Theorem 3.11, V is relatively bounded with respect to Ψ(h)

with a relative bound strictly smaller than one. Then the corollary follows by the

Kato-Rellich theorem. (2) follows from Theorem 3.3. qed

Theorem 3.11 also allows Ψ(h) + V to be defined in form sense. Let V = V+ − V−
where V+ = max{V, 0} and V− = min{−V, 0}. Theorem 3.11 implies that whenever V−

is form bounded with respect to Ψ(p2/2) with a relative bound strictly smaller than

one, it is also form bounded with respect to Ψ(h) with a relative bound strictly smaller

than one. Moreover, assume that V+ ∈ L1
loc(Rd). We see that given Assumption (A1),

Q(Ψ(h)) ∩ Q(V+) ⊃ C∞0 (Rd) by Corollary 3.12. In particular, Q(Ψ(h)) ∩ Q(V+) is

dense. Define the quadratic form

q(f, f) = (Ψ(h)1/2f,Ψ(h)1/2f) + (V
1/2

+ f, V
1/2

+ f)− (V
1/2
− f, V

1/2
− f) (3.24)

on Q(Ψ(h))∩Q(V+). By the KLMN Theorem [RS78] q is a semibounded closed form.
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Definition 3.13 (Generalized Schrödinger operator with singular V ) Let As-

sumption (A2) be satisfied and V = V+ − V− be such that V+ ∈ L1
loc(Rd) and V− is

form bounded with respect to Ψ(1
2
p2) with a relative bound strictly less than 1. We

denote the self-adjoint operator associated with (3.24) by Ψ(h) +̇ V+ −̇ V− defined as

a quadratic form sum.

Since we need (A2) to show the relative form boundedness of V− with respect to Ψ(h),

(A2) is assumed in Definition (3.13).

Now we are in the position to extend Theorem 3.8 to potentials expressed in terms

of form sums.

Theorem 3.14 Let Assumption (A2) be satisfied. Let V = V+ − V− be such that

V+ ∈ L1
loc(Rd) and V− is infinitesimally small with respect to Ψ(1

2
p2) in form sense,

i.e., for every ε > 0 there exists a non-negative constant bε such that

‖V 1/2
− f‖2 ≤ ε‖Ψ(

1

2
p2)1/2f‖2 + bε‖f‖2

for all f ∈ D(Ψ(1
2
p2)1/2). Then the functional integral representation given by Theo-

rem 3.8 also holds for Ψ(h) +̇ V+ −̇ V−.

Proof. Write

V+,n(x) =

{
V+(x), V+(x) < n,
n, V+(x) ≥ n,

V−,m(x) =

{
V−(x), V−(x) < m,
m, V−(x) ≥ m.

The proof is a slight modification of that of [Sim04, Theorem 6.2]. For simplicity we

write just Ψ for Ψ(h). We see that

e−t(Ψ +̇ V+,n −̇ V−,m) → e−t(Ψ +̇ V+,n −̇ V−) (3.25)

strongly as m→∞, for all t ≥ 0, and we also obtain

e−t(Ψ +̇ V+,n −̇ V−) → e−t(Ψ +̇ V+ −̇ V−), (3.26)

for all t ≥ 0, in strong sense as n→∞. On the other hand, we look at the convergence

of the expression ∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+,n−V−,m)(B

TΨ
s

)ds
I
]
. (3.27)

Here I = f(B0)e−i
∫ Tt
0 a(Bs)◦dBsg(BTt). Decompose I into its real and imaginary parts,

and further into their positive and negative parts <I = <I+−<I− and =I = =I+−=I−.

Then by (3.25) and the monotone convergence theorem∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+,n−V−,m)(B

TΨ
s

)ds<I+

]
−→

∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+,n−V−)(B

TΨ
s

)ds<I+

]
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as m → ∞. Similarly, the remaining three terms <I−, =I+ and =I− also converge.

Thus (3.27) converges to

∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+,n−V−)(B

TΨ
s

)ds
I
]

as m→∞. Moreover,

∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+,n−V−)(B

TΨ
s

)ds
I
]
−→

∫
Rd
dxEx,0P×ν

[
e
−
∫ t
0 (V+−V−)(B

TΨ
s

)ds
I
]

as n → ∞, by (3.26) and the dominated convergence theorem. Thus the proof is

complete. qed

4 Ψ-Kato class potentials

4.1 Definition of Ψ-Kato class potentials

In this section we give a meaning to Kato class for potentials V relative to Ψ and

extend generalized Schrödinger operators with vector potential to such V .

It is known that the composition of a Brownian motion and a subordinator yields

a Lévy process. Recall that for given Ψ ∈ B0, the random process

Xt : ΩP × Ων 3 (ω, τ) 7→ BTΨ
t (τ)(ω) (4.1)

is called d-dimensional subordinated Brownian motion with respect to the subordinator

(TΨ
t )t≥0. It is a Lévy process whose properties are determined by the pair (b, λ) in (2.1).

Its characteristic function is

E0,0
P×ν [e

iξ·Xt ] = e−tΨ(ξ·ξ/2), ξ ∈ Rd. (4.2)

Assumption 4.1 Let Ψ ∈ B0 be such that∫
Rd
e−tΨ(ξ·ξ/2)dξ <∞ for all t > 0. (4.3)

Let Ψ ∈ B0 and (b, λ) ∈ R+×L be its corresponding non-negative drift coefficient

and Lévy measure, i.e., Ψ(u) = bu+
∫∞

0
(1− e−uy)λ(dy). It is clear that if b > 0, then

(4.3) is satisfied. In the case of b = 0 but
∫ 1

0
λ(dy) <∞, since supu≥0 Ψ(u) <∞, (4.3)

is not satisfied. Thus Ψ obeying (4.3) at least satisfies
∫ 1

0
λ(dy) = ∞ when b = 0. In

this case we have

Ψ(u2/2) ≥
∫ 1

0

(1− e−u2y/2)λ(dy) ≥ (1− e−1)

∫ 1

0

(
u2y

2
∧ 1)λ(dy) ≥ (1− e−1)

∫ 1

2/u2

λ(dy).

Thus in case b = 0 and
∫ 1

0
λ(dy) = ∞, assuming that there exists ρ(u) such that∫ 1

2/u2 λ(dy) ≥ ρ(u) and
∫
Rd e

−tρ(|ξ|)dξ <∞, we can make sure Assumption 4.1 holds.
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Under Assumption 4.1 we define

pt(x) =
1

(2π)d

∫
Rd
e−ix·ξe−tΨ(ξ·ξ/2)dξ (4.4)

and

Πλ(x) =

∫ ∞
0

e−λtpt(x)dt. (4.5)

The function pt(x) denotes the distribution density of Xt in (4.1) and Πλ(x− y) is the

integral kernel of the resolvent (Ψ(p2/2) + λ)−1 with λ > 0, i.e.,(
f,
(
Ψ(p2/2) + λ

)−1
g
)

=

∫
Rd×Rd

f(x)g(y)Πλ(x− y)dxdy.

Clearly, pt(x) and Πλ(x) are spherically symmetric. For f ∈ C∞0 (Rd) it follows that

E0,0
P×ν [f(Xt)] =

∫
Rd
f(x)pt(x)dx. (4.6)

Hence for non-negative f ∈ C∞0 (Rd), the right hand side of (4.6) is non-negative since

so is the left hand side. Thus pt(x) ≥ 0 for almost every x ∈ Rd. By a limiting

argument with f → 1, we also see that pt ∈ L1(Rd) and ‖pt‖L1(Rd) = 1 by (4.6).

We moreover compute Πλ as

Πλ(x) = (2π)−d/2
1

|x|(d−1)/2

∫ ∞
0

r(d−1)/2

λ+ Ψ(r2/2)

√
r|x|J(d−2)/2(r|x|)dr,

with the Bessel function given by

Jν(s) =
(s

2

)ν 1√
πΓ(ν + 1

2
)

∫ π

0

eis cos θ(sin θ)2νdθ =
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(s
2

)2n+ν

.

Note that supu≥0

√
uJν(u) <∞.

Let

‖f‖l1(L∞) =
∑
α∈Zd

sup
x∈Cα
|f(x)|,

where Cα denotes the unit cube centered at α ∈ Zd. We introduce an additional

assumption on the distribution density pt.

Assumption 4.2 Let pt be such that for each δ > 0, supt>0 ‖1{|x|>δ}pt‖l1(L∞) <∞.

Let f be a real valued function on Rd. When r 7→ f(rx) is non-increasing on [0,∞)

for all x ∈ Rd, we say that f is radially non-increasing. In d = 1 for a radially non-

increasing L1-function f it can be seen, by the definition of l1(L∞), that there exists a

constant Cδ = Cδ(f) such that for each δ > 0,

‖1{|x|>δ}f‖l1(L∞) ≤ Cδ‖f‖L1 . (4.7)
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In the general case d ≥ 2 it can be also seen that (4.7) holds for all radially non-

increasing f , see [CMS90, p. 131, Corollary]. In particular, Assumption 4.2 is satisfied

whenever pt is radially non-increasing, since ‖pt‖L1 = 1.

Example 4.3 (α/2-stable subordinator) In the case of Ψ(u) = uα/2, 0 < α < 2, it

is clear that Assumption 4.1 is satisfied. It is also known that the distribution density of

BTΨ
t

(which in this case is symmetric α-stable process) is radially non-increasing. This

is obtained by a unimodality argument of spherically symmetric distribution functions;

see [Kan77, Theorem 4.1],[Wol78, Theorem 2], [CMS90, p.132], [Yam78, Theorem 1],

and [Sat99] for details on unimodality. Then Assumption 4.2 is again satisfied.

Example 4.4 Let Ψ(u) =
√

2u+m2 −m, m ≥ 0. It is clear that Assumption 4.1 is

satisfied. The distribution function pt of BTΨ
t

is expressed as

pt(x) = (2π)−d
t√

|x|2 + t2

∫
Rd
emte−

√
(|x|2+t2)(p2+m2)dp,

see [HS78, (2.7)]. Then pt is indeed radially non-increasing.

The next proposition allows an extension of Ψ(p2/2) to Kato class.

Proposition 4.5 Let V ≥ 0. Under Assumptions 4.1 and 4.2 the following three

properties are equivalent:

(1) lim
t↓0

sup
x∈Rd

∫ t

0

Ex,0P×ν [V (Xs)]ds = 0,

(2) lim
λ→∞

sup
x∈Rd

(
(Ψ(p2/2) + λ)−1V

)
(x) = 0,

(3) lim
δ↓0

sup
x∈Rd

∫
|x−y|<δ

Π1(x− y)V (y)dy = 0.

Proof. The proof is similar to that of Theorem III.1 in [CMS90], and is therefore

omitted. qed

Definition 4.6 (Ψ-Kato class) Let Assumptions 4.1 and 4.2 be satisfied. Write V =

V+ − V− in terms of its positive and negative parts. The Ψ-Kato class is defined as

the set of potentials V for which V− and 1CV+ with every compact subset C ⊂ Rd

satisfy any of the three equivalent conditions in Proposition 4.5. Here 1C denotes the

indicator function of C.

By (3) of Proposition 4.5 we can derive explicit conditions defining Ψ-Kato class

using the relation of the Lévy measure of the subordinator with the associated Bernstein

function.
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4.2 Ψ-Kato class potential and Lp-Lq bound

In this section we construct Schrödinger semigroups with Ψ-Kato class potentials and

show their Lp-Lq boundedness. References on the Lp-Lq bound for semigroups with

usual Schrödinger operators with magnetic field include [Sim82, BHL00].

Lemma 4.7 Let V ≥ 0 and Ψ ∈ B0. Suppose that Assumptions 4.1 and 4.2 hold.

Suppose moreover that V satisfies (1) of Proposition 4.5. Then for t ≥ 0,

sup
x∈Rd

Ex,0P×ν
[
e
∫ t
0 V (Xs)ds

]
<∞. (4.8)

Proof. There exists s > 0 such that supx∈Rd E
x,0
P×ν [

∫ s
0
V (Xs)ds] = ε < 1 by (1) of

Proposition 4.5. Then by the Khas’minskii Lemma we conclude that

sup
x∈Rd

Ex,0P×ν
[
e
∫ s
0 V (Xs)ds

]
≤ (1− ε)−1.

Consider the image measure ρ of (Xt)t≥0 on the space D([0,∞);Rd) of cádlág paths.

Then Exρ
[
e
∫ s
0 V (Xs)ds

]
= Ex,0P×ν

[
e
∫ s
0 V (Xs)ds

]
and clearly (Xt)t≥0 is a Markov process with

respect to ρ. Furthermore,

Exρ
[
e
∫ 2s
0 V (Xs)ds

]
= Exρ

[
e
∫ s
0 V (Xs)dsEXsρ

[
e
∫ s
0 V (Xs)ds

]]
≤ (1− ε)−2.

Repeating this procedure we obtain (4.8) for all t ≥ 0. qed

The next result says that we can define a Feynman-Kac semigroup for Ψ-Kato class

potentials.

Theorem 4.8 Let Ψ ∈ B0 and suppose that Assumptions 4.1 and 4.2 hold. Let V

belong to Ψ-Kato class and let Assumption (A2) hold. Consider

Utf(x) = Ex,0P×ν

[
e−i

∫ TΨ
t

0 a(Bs)◦dBse
−
∫ t
0 V (B

TΨ
s

)ds
f(BTΨ

t
)

]
.

Then Ut is a strongly continuous self-adjoint semigroup. In particular, there exists a

self-adjoint operator KΨ bounded from below such that Ut = e−tK
Ψ

.

Proof. Let V = V+ − V−. Hence by Lemma 4.7 we have

‖Utf‖2 ≤
∫
Rd
dxEx,0P×ν

[
e−2

∫ t
0 V+(Xs)ds|f(Xt)|2

]
Ex,0P×ν

[
e2
∫ t
0 V−(Xs)ds

]
≤ Ct

∫
Rd
dxEx,0P×ν

∣∣f(Xt)|2
]
≤ Ct‖f‖2,
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where Ct = supx∈Rd E
x,0
P×ν [e

2
∫ t
0 V−(Xs)ds]. Thus Ut is a bounded operator from L2(Rd) to

L2(Rd). In the same manner as in Step 2 of the proof of Theorem 3.8 we conclude that

the semigroup property UtUs = Ut+s holds for t, s ≥ 0. We check strong continuity of

Ut in t; it suffices to show weak continuity. Let f, g ∈ C∞0 (Rd) and we write Tt for TΨ
t

for simplicity. Then we have

(f,Utg) =

∫
Rd
dxEx,0P×ν

[
f(B0)g(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
.

Since Tt(τ) → 0 as t → 0 for each τ ∈ Ων , the dominated convergence theorem gives

(f,Utg)→ (f, g).

Finally we check the symmetry property U∗t = Ut. By a limiting argument it is

enough to show this for a ∈ (C2
b(Rd))d. Let

B̃s = B̃s(ω, τ) = BTt(τ)−s(ω)−BTt(τ)(ω), 0 ≤ s ≤ Tt(τ).

Then for each τ ∈ Ων , B̃s
d
= Bs for 0 ≤ s ≤ Tt with respect to dP x. Here Z

d
= Y

denotes that Z and Y are identically distributed. Let

Ij =
1

2

(
a(x+ B̃Ttj/n) + a(x+ B̃Tt(j−1)/n)

)
(B̃Ttj/n − B̃Tt(j−1)/n).

Then
∑n

j=1 Ij →
∫ Tt

0
a(x + B̃s) ◦ dB̃s in L2(ΩP , dP ) as n → ∞. Thus there exists a

subsequence {
∑n′

j=1 Ij}n′ of {
∑n

j=1 Ij}n such that
∑n′

j=1 Ij →
∫ Tt

0
a(x+B̃s)◦dB̃s almost

surely and

(f,Utg) = lim
n′→∞

E0,0
P×ν

[∫
Rd
dx f(x)e−i

∑n′
j=1 Ije−

∫ t
0 V (x+B̃Ts )g(x+ B̃Tt)

]
by the dominated convergence theorem. We reset n′ as n. Changing the variable x to

y = x+ B̃Tt , we have

(f,Utg) = lim
n→∞

E0,0
P×ν

[∫
Rd
dyf(y − B̃Tt)e

−i
∑n
j=1 Ĩje−

∫ t
0 V (y−B̃Tt+B̃Ts )g(y)

]
,

where

Ĩj =
1

2

(
a(y − B̃Tt + B̃Ttj/n) + a(y − B̃Tt + B̃Tt(j−1)/n)

)
(B̃Ttj/n − B̃Tt(j−1)/n).

Since B̃Ts − B̃Tt
d
= BTt−Ts , we can compute limn→∞

∑n
j=1 Ĩj in L2(ΩP , dP

0) as

lim
n→∞

n∑
j=1

Ĩj = −
∫ Tt

0

a(Bs) ◦ dBs.
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Then we have

(f,Utg) =

∫
Rd
dxEx,0P×ν

[
f(BTt)e

+i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTt−Ts )dsg(x)

]
.

Moreover, as Tt − Ts
d
= Tt−s for 0 ≤ s ≤ t, we obtain

(f,Utg) =

∫
Rd
dxEx,0P×ν

[
f(BTt)e

−i
∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )ds

]
g(x) = (Utf, g).

Since Ut is a strongly continuous self-adjoint semigroup, its generator KΨ is a symmet-

ric closed operator and there exists a ∈ R such that (−∞, a) includes the resolvent of

KΨ by the Hille-Yohsida theorem. Then the spectrum of KΨ is included R, and hence

KΨ is self-adjoint. qed

Definition 4.9 (Ψ-Kato class Schrödinger operator) Let Assumptions 4.1 and 4.2

be satisfied. Let V be in Ψ-Kato class and take Assumption (A2). We call KΨ given in

Theorem 4.8 generalized Schrödinger operator for Ψ-Kato class potentials. We refer to

the one-parameter operator semigroup {e−tKΨ
: t ≥ 0}, as the Ψ-Kato class generalized

Schrödinger semigroup.

For Ψ-Kato class potentials V condition (2) of Proposition 4.5 implies that V− is

infinitesimally form bounded with respect to Ψ(p2/2). In this case Ψ(p2/2) + V can

be defined in form sense.

Theorem 4.10 Suppose that Assumptions 4.1 and 4.2 hold. Let V be in Ψ-Kato class

and take Assumption (A2). Then

KΨ = Ψ(h) +̇ V+ −̇ V−. (4.9)

Proof. The proof is similar to that of Theorem 3.14. In the same approximation of V

as in the proof of Theorem 3.14, we see that e−t(Ψ(h) +̇ V+,n −̇ V−,m) → e−t(Ψ(h) +̇ V+,n −̇ V−)

as n→∞, and then e−t(Ψ(h) +̇ V+,n −̇ V−) → e−t(Ψ(h) +̇ V+ −̇ V−) as m→∞ strongly. On

the other hand Feynman-Kac formula of Inm = (f, e−t(Ψ(h) +̇ V+,n −̇ V−,m)g) satisfies that

lim
m→∞

lim
n→∞

Imn =

∫
Rd
dxEx,0P×ν

[
f(x)e−i

∫ Tt
0 a(Bs)◦dBse−

∫ t
0 V (BTs )g(BTt)

]
.

Hence the theorem follows. qed

Put KΨ
0 for the operator defined by KΨ with a replaced by 0.
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Theorem 4.11 (Lp-Lq bound) Let V be a Ψ-Kato class potential and assume (A2)

to hold. Suppose that Assumptions 4.1 and 4.2 hold. Then e−tK
Ψ

is a bounded operator

from Lp(Rd) to Lq(Rd), for all 1 ≤ p ≤ q ≤ ∞. Moreover, ‖e−tKΨ‖p,q ≤ ‖e−tK
Ψ
0 ‖p,q

holds for all t ≥ 0.

Proof. By the Riesz-Thorin theorem it suffices to show that e−tK
Ψ

is bounded as an

operator of (1) L∞(Rd) → L∞(Rd), (2) L1(Rd) → L1(Rd) and (3) L1(Rd) → L∞(Rd).

Since

|e−tKΨ

f(x)| ≤ e−tK
Ψ
0 |f |(x), (4.10)

we will prove (1)-(3) for e−tK
Ψ
0 in a similar way to [Sim82]. qed

5 The case of operators with spin

5.1 Generalized Schrödinger operator with spin Zp, p ≥ 2

Besides operators describing interactions with magnetic fields we now consider opera-

tors also including a spin variable. The Schrödinger operator with spin 1/2 is formally

given by

h1/2 =
1

2
(σ · (p− a))2 (5.1)

on L2(R3;C2), where σ = (σ1, σ2, σ3) are the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Note that under Assumption (A4)

h1/2f =
1

2
p2f − a · pf +

(
1

2
a · a− 1

2
(p · a)− 1

2
σ · (∇× a)

)
f (5.2)

holds for f ∈ C2⊗C∞0 (R3). In order to construct a functional integral representation for

e−th1/2 we make a unitary transform of the operator h1/2 on L2(R3;C2) to an operator

on the space L2(R3 × Z2). This is a space of L2-functions of x ∈ R3 and an additional

two-valued spin variable θ ∈ Z2, where

Z2 = {−1, 1} = {θ1, θ2}. (5.3)

Also, we define on L2(R3 × Z2) the operator

(hZ2f)(x, θ) = (hf)(x, θ)− 1

2
θb3(x)f(x, θ)− 1

2

(
b1(x)− iθb2(x)

)
f(x,−θ), (5.4)
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where x ∈ R3, θ ∈ Z2 and (b1, b2, b3) = ∇× a. The operators hZ2 and h1/2 are unitary

equivalent, as is shown in [HL08].

Next we generalize the operator hZ2 on L2(R3×Z2) by considering a similar operator

on L2(Rd × Zp) for d ≥ 1 and p ≥ 2. Define Zp as the cyclic group of the pth roots of

unity by

Zp = {θ(p)
1 , ..., θ(p)

p }, (5.5)

where

θ(p)
α = exp

(
2πi

α

p

)
, α ∈ N. (5.6)

In what follows we fix p ≥ 2 and abbreviate θ
(p)
β simply to θβ for notational convenience.

Consider the finite dimensional vector space `2(Zp) = {f : Zp → C} equipped with the

scalar product (f, g)`2(Zp) =
∑p

β=1 f(θβ)g(θβ).

Now we consider the Schrödinger operator with spin Zp. We define a spin operator

with its diagonal part U and off-diagonal part Uβ, β = 1, ..., p− 1, separately.

Definition 5.1 (Generalized spin operator) We define two functions below:

(1) (Diagonal part) Let Up : Rd × Zp → R be such that maxθ∈Zp |Up(x, θ)| is a

multiplication operator, relatively bounded with respect to 1
2
p2.

(2) (Off-diagonal part) Let Wβ : Rd × Zp → C, 1 ≤ β ≤ p − 1, be such that

maxθ∈Zp |Wβ(x, θ)| is a multiplication operator, relatively bounded with respect

to 1
2
p2. Moreover, let Uβ : Rd × Zp → C be defined

Uβ(x, θα) =
1

2

(
Wβ(x, θα+β) +Wp−β(x, θα)

)
, α = 1, ..., p, β = 1, ..., p− 1.

(5.7)

Furthermore, we call MZp : L2(Rd × Zp)→ L2(Rd × Zp),

MZp : f(x, θα) 7→
p∑

β=1

Uβ(x, θα)f(x, θα+β) (5.8)

the generalized spin operator on L2(Rd × Zp).

Below we will use the notation

uβ(x) = max
θ∈Zp
|Uβ(x, θ)|, 1 ≤ β ≤ p. (5.9)

Clearly, uβ(x) is a multiplication operator relatively bounded with respect to 1
2
p2, i.e.,

there exist cβ > 0 and bβ ≥ 0 such that

‖uβf‖ ≤ cβ‖
1

2
p2f‖+ bβ‖f‖, β = 1, ..., p, (5.10)
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for all f ∈ D((1/2)p2). These definitions of Uβ cover, in particular, the Z2 case of the

Schrödinger operator associated with spin 1/2.

Example 5.2 (Spin 1/2) Let d = 3 and p = 2. Define

W1(x, θ) = −1

2
(b1(x) + iθb2(x)), θ ∈ Z2.

Then θ1 = −1, θ2 = 1 and by (5.7) we see that

U1(x, θ) =
1

2
(W1(x, θθ1) +W1(x, θ)), θ ∈ Z2.

It is straightforward to see that W1(x, θθ1) = −1
2
(b1(x) − iθb2(x)) = W1(x, θ), hence

the off-diagonal part is U1(x, θ) = −1
2
(b1(x)− iθb2(x)), while the diagonal part is given

by U2(x, θ) = −1
2
θb3(x), both of which coincide with the interaction in (5.4)

Example 5.3 Let p ≥ 2, and Wβ(θ) = W (θ) = −1
2
(b1 + iθb2) for 1 ≤ β ≤ p− 1. Then

Uβ(θα) =
1

2

(
Wβ(θα+β) +Wp−β(θα)

)
= −1

2

(
b1 + i

θα+β − θp−α
2

b2

)
. (5.11)

This gives one possible generalization of the case of spin 1/2 of Example 5.2.

Definition 5.4 (Schrödinger operator with generalized spin) Let h be the gen-

eralized Schrödinger operator defined in (3.3). Under Assumption (A1) we define the

Schrödinger operator with generalized spin MZp by

hZp = 1⊗ h+MZp . (5.12)

Above we made the identification L2(Rd × Zp) ∼= `2(Zp) ⊗ L2(Rd). Formally, hZp is

written as

(hZpf)(x, θα) =

(
1

2
(p− a(x))2 + Up(x, θα)

)
f(x, θα) +

p−1∑
β=1

Uβ(x, θα)f(x, θα+β). (5.13)

We introduce assumptions on the generalized spin:

Assumption 5.5 Let Uβ be defined in Definition 5.1, uβ by (5.10) and cβ by (5.9).

We consider the following conditions:

(U1)
∑p

β=1 cβ < 1.

(U2) uβ ∈ L∞(Rd) for β = 1, ..., p
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Assumption (U1) is a sufficient condition for self-adjointness of Schrödinger operator

with generalized spin. (U2) is a stronger assumption than (U1). (U2) is used to con-

struct a functional integral representation for the Schrödinger operator with generalized

spin. Although (U2) can be relaxed, we do not consider weaker conditions here; see

[HIL11], where we shall discuss relativistic Schrödinger operator with spin 1/2 under

weaker conditions than (U2).

Theorem 5.6 Let Assumption (A2) and (U1) be satisfied. Then hZp is self-adjoint on

`2(Zp)⊗D(h) and bounded from below. Moreover, it is essentially self-adjoint on any

core of 1⊗ h. In particular, `2(Zp)⊗ C∞0 (Rd) is an operator core of hZp.

Proof. It can be seen that
p∑

α=1

g(x, θα)

(
p−1∑
β=1

Wβ(x, θα+β)f(x, θα+β)

)
=

p∑
γ=1

(
p−1∑
β=1

Wp−β(x, θγ)g(x, θγ+β)

)
f(x, θγ)

for every x ∈ Rd. Then it follows that

(g(x, ·),MZpf(x, ·))`2(Zp) = (MZpg(x, ·), f(x, ·))`2(Zp)

and MZp is symmetric. Its norm can be estimated as ‖MZpf‖ ≤
∑p

β=1 ‖(1⊗ uβ)f‖ by

Definition 5.1. Then with h0 = 1
2
p2 and E > 0, we have by the proof of Theorem 3.11,

‖uβ(h+ E)−1g‖ ≤ ‖uβ(h0 + E)−1|g|‖, and hence

‖MZpf‖ ≤
p∑

β=1

‖uβ(h0 + E)−1‖‖1⊗ (h+ E)f‖ ≤
p∑

β=1

cβ‖(1⊗ h)f‖+ b‖f‖

with a suitable constant b. Thus the claim follows from the Kato-Rellich theorem. qed

Definition 5.7 (Generalized Schrödinger operator with spin) Suppose that As-

sumption (A2) and (U1) hold. Recall that EhZp denotes inf Spec(hZp). Let Ψ ∈ B0 and

put

hZp =


hZp if EhZp ≥ 0,

hZp − EhZp if EhZp < 0.
(5.14)

We call the operator

HΨ
Zp = Ψ

(
hZp
)

+ V (5.15)

generalized Schrödinger operator with vector potential a and spin Zp.

Corollary 5.8 Suppose that Assumption (A2) and (U1) hold. If Ψ ∈ B0, then

`2(Zp)⊗ C∞0 (Rd) is an operator core of Ψ(hZp).

Proof. Since hZp is essentially self-adjoint on `2(Zp)⊗ C∞0 (Rd), the corollary can be

proven in the same way as Theorem 3.3. qed
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5.2 Functional integral representation

In this subsection we give a functional integral representation of e
−tHΨ

Zp by means of

Brownian motion, a jump process and a subordinator.

Let (Nβ
t )t≥0, β = 1, ..., p − 1, be p − 1 independent Poisson processes with unit

intensity on a probability space (ΩN ,FN , µ), i.e., µ(Nβ
t = n) = e−ttn/n!. Define the

random process (Nt)t≥0 by

Nt =

p−1∑
β=1

βNβ
t . (5.16)

Let FN
t = σ(Nt, t ≤ s) be the natural filtration. Then since Nt is a Lévy process, it

is a Markov process with respect to FN
t . We write Eµ[f(Nt + α)] as Eαµ[f(Nt)]. Also,

Eαµ[1N0=α] = 1. Define ∫ w+

v

g(Ns−)dNβ
s =

∑
v≤r≤w

N
β
r+ 6=N

β
r−

g(Nr−). (5.17)

It can be seen that

Eµ
[∫ w+

v

g(Ns−)dNβ
s

]
= Eµ

[∫ w

v

g(Ns)ds

]
. (5.18)

The next lemma is an extension of a result obtained in [ALS83, HL08].

Lemma 5.9 Suppose that Assumptions (A2) and (U2) hold, and∫ t

0

ds

∫
Rd
dyP̂s(x− y)| log uβ(y)| <∞, β = 1, ..., p− 1, (5.19)

where P̂s(x− y) is the heat kernel given by (3.20). Then

(f, e−thZpg) = e(p−1)t

p∑
α=1

∫
Rd
dxEx,αP×µ

[
f(B0, θN0)g(Bt, θNt)e

S
]
, (5.20)

where S = Sa + Sspin and

Sa = −i
∫ t

0

a(Bs) ◦ dBs,

Sspin = −
∫ t

0

Up(Bs, θNs)ds+

p−1∑
β=1

∫ t+

0

log(−Uβ(Bs, θNs−))dNβ
s .

Here we take log z with the principal branch for z ∈ C.
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Proof. First assume that the diagonal part Up(x, θα) and the off-diagonal part

Uβ(x, θα) are continuous in x and a ∈ (C∞0 (Rd))d. Since from (5.19) and (5.18) it

follows that

Ex,αP×µ

[∫ t+

0

| log(−Uβ(Bs, θNs−))|dNβ
s

]
≤
∫ t

0

ds

∫
Rd

P̂s(x− y)| log uβ(y)|dy <∞,

we note that ∫ t+

0

| log(−Uβ(Bs, θNs−))|dNβ
s <∞ (5.21)

almost surely. By the estimate |cSspin| ≤ c‖up‖∞t +
∑p−1

β=1 | log ‖uβ‖c∞|N
β
t and the

equality

E0
µ

[
exp

(
p−1∑
β=1

rβN
β
t

)]
= exp

(
t

p−1∑
β=1

(erβ − 1)

)
for rβ ∈ R, we have for c > 0,∣∣Ex,αP×µ[ecSspin ]

∣∣ ≤ exp

(
t

(
c‖up‖∞ +

p−1∑
β=1

(‖uβ‖c∞ − 1)

))
, (5.22)

where uβ is given in (5.9). Denote

Z[v,w] = −i
∫ w

v

a(Bs) ◦ dBs −
∫ w

v

Up(Bs, θNs)ds+

p−1∑
β=1

∫ w+

v

log(−Uβ(Bs, θNs−))dNβ
s

and let

Ptg(x, θα) = Ex,αP×µ
[
eZ[0,t]g(Bt, θNt)

]
.

Let g ∈ `2(Zp)⊗C∞0 (Rd). By using the Schwarz inequality and setting c = 2 in (5.22)

we have the estimate

‖Ptg‖2 ≤ exp

(
t

(
2‖up‖∞ +

p−1∑
β=1

(‖uβ‖2
∞ − 1)

))
‖g‖2.

Thus Pt is bounded. We show now that {Pt : t ≥ 0} is a C0-semigroup with generator

−(hZp + p − 1), i.e., (1) P0 = I, (2) PsPt = Ps+t, (3) Ptg is continuous in t and (4)

lim
t→0

1

t
(Ptg − g) = −(hZp + (p − 1))g in strong sense. First, (1) is trivial. To check (2)

notice that

PtPsg(x, θα) = Ex,αP×µ
[
eZ[0,t]EBt,NtP×µ

[
eZ[0,s]g(Bs, θNs)

]]
. (5.23)

By the Markov property of Bt we have

(5.23) = Ex,αP×µ

[
eZ[0,t] exp

(
−i
∫ t+s

t

a(Br) ◦ dBr

)
ENtµ

[
exp

(
−
∫ s

0

Up(Bt+r, θNr)dr +

p−1∑
β=1

∫ s+

0

log(−Uβ(Bt+r−, θNr−))dNβ
r

)
g(Bt+s, θNs)

]]
.

(5.24)
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Furthermore the Markov property of Nt yields that

(5.24) = Ex,αP×µ
[
eZ[0,t]eZ[t,t+s]g(Bt+s, θNt+s)

]
= Ps+tg(x, θα).

This proves the semigroup property (2). Next we obtain the generator of Pt. An

application of the Itô formula (see Appendix A) yields that

dNt =

p−1∑
β=1

∫ t+

0

βdNβ
s , dθNt =

p−1∑
β=1

(θNt+β − θNt)

and

dg(Bt, θNt) =

∫ t

0

∇g(Bs, θNs) · dBs +
1

2

∫ t

0

∆g(Bs, θNs)ds

+

p−1∑
β=1

∫ t+

0

(g(Bs, θNs+β)− g(Bs, θNs))dN
β
s

deZ[0,t] =

∫ t

0

eZ[0,s](−ia(Bs)) · dBs +
1

2

∫ t

0

eZ[0,s](−i∇ · a(Bs)− a(Bs)
2)ds

−
∫ t

0

eZ[0,s]Up(Bs, θNs)ds+

p−1∑
β=1

∫ t+

0

eZ[0,s−]

(
elog(−Uβ(Bs,θNs− )) − 1

)
dNβ

s .

The product formula (see Appendix A) d
(
eZ[0,t]g

)
= deZ[0,t] · g + eZ[0,t] · dg + deZ[0,t] · dg

furthermore gives

d
(
eZ[0,t]g

)
(Bt, θNt) =

∫ t

0

eZ[0,s]

{
1

2
∆g(Bs, θNs)− ia(Bs) · ∇g(Bs, θNs)

+

(
1

2
(−i∇ · a)(Bs)−

1

2
a(Bs)

2 − Up(Bs, θNs)

)
g(Bs, θNs)

}
ds

+

∫ t

0

eZ[0,s]

(
∇g(Bs, θNs)− ia(Bs)g(Bs, θNs)

)
· dBs

+

p−1∑
β=1

∫ t+

0

eZ[0,s−]

(
g(Bs, θNs−+β)elog(−Uβ(Bs,θNs− )) − g(Bs, θNs−)

)
dNβ

s .

Taking expectation values on both sides above yields

1

t
(f, (Pt − 1)g) =

1

t

∫ t

0

ds

∫
Rd
dxf(x)Ex,αP×µ [G(s)] ,
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where

G(s) = eZ[0,s]

(
1

2
∆− ia(Bs) · ∇+

1

2
(−i∇ · a)(Bs)−

1

2
a(Bs)

2 − Up(Bs, θNs)

)
g(Bs, θNs)

+

p−1∑
β=1

eZ[0,s]
(
g(Bs, θNs+β)elog(−Uβ(Bs,θNs )) − g(Bs, θNs)

)
,

G(0) =

(
1

2
∆− ia(B0) · ∇+

1

2
(−i∇ · a)(B0)− 1

2
a(B0)2 − Up(B0, θN0)

)
g(B0, θN0)

+

p−1∑
β=1

(−Uβ(B0, θN0)g(B0, θN0+β)− g(B0, θN0))

= −(hZp + (p− 1))g(x, θα).

Note that Uβ(x, θ) and aµ(x) are continuous in x. Therefore G(s) is continuous at s = 0

for each (ω, τ) ∈ ΩP × ΩN , and Ex,αP×µ[G(s)] is continuous at s = 0 by the dominated

convergence theorem. Thus

lim
t→0

1

t
(f, (Pt − 1)g) = (f,−(hZp + (p− 1))g)

follows. Finally, the strong continuity (3) follows from (2) and (4), and hence

et(p−1)Ptg = e−thZpg. (5.25)

By a similar approximation argument as in the proof of Proposition 3.7, (5.25) can

be extended to a obeying Assumption (A2). Finally, we extend (5.25) for Uβ given in

Definition 5.1. By using a mollifier it is seen that there exists a sequence U
(n)
β (x, θα),

n = 1, 2, 3, ..., such that they are continuous in x and converge to Uβ(x, θα) for each

x as n → ∞, and ‖U (n)
β (·, θα)‖∞ ≤ ‖Uβ(·, θα)‖∞. For each fixed τ ∈ ΩN there exists

r1 = r1(τ), ..., rM = rM(τ), where M = M(τ), such that

e
∑p−1
β=1

∫ t+
0 log(−Uβ(Bs,θNs− ))dNβ

s =

p−1∏
β=1

M∏
i=1

(−Uβ(Bri , θNri )). (5.26)

Then for each τ ∈ ΩN ,

lim
n→∞

e
∑p−1
β=1

∫ t+
0 log(−U(n)

β (Bs,θNs− ))dNβ
s = e

∑p−1
β=1

∫ t+
0 log(−Uβ(Bs,θNs− ))dNβ

s . (5.27)

In the same way as above we can also see that e−
∫ t
0 U

(n)
p (Bs,θNs )ds → e−

∫ t
0 Up(Bs,θNs )ds as

n → ∞ almost surely. Therefore by the dominated convergence theorem (5.25) holds

for such Uβ and U . qed

Now we can state and prove the functional integral representation of e
−tHΨ

Zp .
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Theorem 5.10 Let Ψ ∈ B0 and V ∈ L∞(Rd). Let Assumptions (A2) and (U2) be

satisfied, and suppose∫
R
ρ(r, t)dr

∫ r

0

ds

∫
Rd
dyP̂s(x− y)| log uβ(y)| <∞, β = 1, ..., p− 1, (5.28)

where ρ(r, t) is the distribution density of TΨ
t on R and uβ is given in (5.9). Then

(f, e
−tHΨ

Zpg) =

p∑
α=1

∫
Rd
dxEx,α,0P×µ×ν

[
e(p−1)TΨ

t f(B0, θN0)g(BTΨ
t
, θN

TΨ
t

)eSΨ
]
, (5.29)

where SΨ = SΨ
V + SΨ

a + SΨ
spin and

SΨ
V = −

∫ t

0

V (BTΨ
s

)ds, SΨ
a = −i

∫ TΨ
t

0

a(Bs) ◦ dBs,

SΨ
spin =



−
∫ TΨ

t

0

(
Up(Bs, θNs)− EhZp

)
ds+

p−1∑
β=1

∫ TΨ
t +

0

log(−Uβ(Bs, θNs−))dNβ
s

if EhZp < 0,

−
∫ TΨ

t

0

(
Up(Bs, θNs)

)
ds+

p−1∑
β=1

∫ TΨ
t +

0

log(−Uβ(Bs, θNs−))dNβ
s

if EhZp ≥ 0.

Proof. Since from (5.28) it follows that

Ex,α,0P×µ×ν

[∫ TΨ
t +

0

| log(−Uβ(Bs, θNs−))|dNβ
s

]

≤
∫
R
ρ(r, t)dr

∫ r

0

ds

∫
Rd

P̂s(x− y)| log uβ(y)|dy <∞,

we notice that
∫ TΨ

t +

0
| log(−Uβ(Bs, θNs−))|dNβ

s < ∞ almost surely. Using Lemma 5.9

we obtain similarly like in the proof of (3.16) that

(
f, e−tΨ(hZp )g

)
=

p∑
α=1

∫
Rd
dxEx,α,0P×µ×ν

[
e(p−1)TΨ

t f(B0, θN0)g(BTΨ
t
, θN

TΨ
t

)eSΨ
a +SΨ

spin

]
. (5.30)

Let 0 = t0 < t1 < · · · < tn = t. We show that(
f0,

n∏
j=1

e−(tj−tj−1)Ψ(hZp )fj

)

=

p∑
α=1

∫
Rd
dxEx,α,0P×µ×ν

[
e(p−1)TΨ

t f0(B0, θN0)

(
n∏
j=1

fj(BTΨ
tj
, θN

TΨ
tj

)

)
eSΨ

a +SΨ
spin

]
. (5.31)
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This can be proven in the same way as in Step 2 of the proof of Theorem 3.8 with the

d-dimensional Brownian motion Bt on (ΩP ,FP , P
x) replaced by the d+ 1 dimensional

Markov process (Bt, Nt) on (ΩP ×ΩN ,FP ×FN , P
x× µ) under the natural filtration.

Note that when V is continuous, by the Trotter product formula and (5.31) it follows

that(
f, e

−tHΨ
Zpg
)

= lim
n→∞

(
f,
(
e−(t/n)Ψ(hZp)e−(t/n)V

)n
g
)

= lim
n→∞

p∑
α=1

∫
Rd
dxEx,α,0P×µ×ν[

e(p−1)TΨ
t f (B0, θN0)e

−
∑n
j=1

t
n
V

(
B
TΨ
jt/n

)
g
(
BTt , θNTΨ

t

)
eSΨ

a +SΨ
spin

]

=

p∑
α=1

∫
Rd
dxEx,α,0P×µ×ν

[
e(p−1)TΨ

t f (B0, θN0)g
(
BTΨ

t
, θN

TΨ
t

)
eSΨ
]
.

Hence the theorem holds for continuous V . This can be extended for V ∈ L∞(Rd) in

the same way as in Step 4 of the proof of Theorem 3.8. qed

Remark 5.11 In the case of Ψ(u) =
√

2u+m2−m, the distribution of TΨ
t is explicitly

given by (2.4).

Now let h0
Zp be defined by hZp in (5.12) with a and Uβ, β = 1, ..., p− 1, replaced by

0 and |Uβ|, respectively, i.e.,

(h0
Zpf) (x, θα) =

1

2
p2f (x, θα) + Up (x, θα) f (x, θα)−

p−1∑
β=1

|Uβ (x, σ) |f (x, θα+β) . (5.32)

Let

h0
Zp =


h0
Zp if Eh0

Zp
≥ 0,

h0
Zp − Eh0

Zp
if Eh0

Zp
< 0.

(5.33)

An immediate corollary of Theorem 5.10 is

Corollary 5.12 (Diamagnetic inequality) Under the assumptions of Theorem 5.10

we have hZp − Eh0
Zp
≥ 0. Moreover,

(1) if Eh0
Zp
≥ 0, then∣∣∣(f, e−t(Ψ(hZp)+V )g

)∣∣∣ ≤ (|f |, e−t(Ψ
(
h0
Zp

)
+V
)
|g|
)

(5.34)

and E
Ψ
(
h0
Zp

)
+V
≤ EΨ(hZp)+V ;
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(2) if Eh0
Zp
< 0, then∣∣∣∣∣

(
f, e

−t
(

Ψ

(
hZp−E

h0
Zp

)
+V

)
g

)∣∣∣∣∣ ≤
(
|f |, e−t

(
Ψ
(
h0
Zp

)
+V
)
|g|
)

(5.35)

and E
Ψ
(
h0
Zp

)
+V
≤ E

Ψ

(
hZp−E

h0
Zp

)
+V

.

Proof. Note the estimate∣∣∣∣∣exp

(
p−1∑
β=1

∫ TΨ
t +

0

log
(
−Uβ

(
θNβ

s−

))
dNβ

s

)∣∣∣∣∣ ≤ exp

(
p−1∑
β=1

∫ TΨ
t +

0

log |Uβ
(
θNβ

s−

)
|dNβ

s

)
.

(5.36)

Let Ψ(u) = u and then TΨ
t = t. Theorem 5.10 and (5.36) imply that

|
(
f, e−thZpg

)
| ≤

(
|f |, e−th

0
Zp |g|

)
. (5.37)

This further implies Eh0
Zp
≤ EhZp , thus hZp − Eh0

Zp
≥ 0 holds. (5.34) and (5.35) fol-

low similarly by Theorem 5.10 and the estimate (5.36). E
Ψ
(
h0
Zp

)
+V
≤ EΨ(hZp)+V and

E
Ψ
(
h0
Zp

)
+V
≤ E

Ψ

(
hZp−E

h0
Zp

)
+V

are an immediate consequence of (5.34) and (5.35), re-

spectively. qed

Theorem 5.13 Let Assumptions (A2), (U2) and (5.19) be satisfied. If |V | is relatively

bounded with respect to Ψ
(
h0
Zp

)
with a relative bound b, then |V | is relatively bounded

with respect to Ψ
(
hZp
)

with a relative bound not larger than b.

Proof. We prove the theorem in the case of Eh0
Zp
< 0; the case Eh0

Zp
≥ 0 is simpler.

By assumption we have for every ε > 0,

‖V f‖ ≤ (b+ ε)‖Ψ
(
h0
Zp

)
f‖+ c‖f‖. (5.38)

In virtue of Corollary 5.12 we have

‖|V |
(

Ψ
(
hZp − Eh0

Zp

)
+ E

)−1

f‖

‖f‖
≤
‖|V |

(
Ψ
(
h0
Zp

)
+ E

)−1

|f |‖

‖f‖
(5.39)

By (5.38) the right hand side of (5.39) converges to a number smaller than b + ε as

E →∞. Thus

‖V f‖ ≤ (b+ ε)‖Ψ
(
hZp − Eh0

Zp

)
f‖+ cb‖f‖ (5.40)

follows with some constant cb. Let X < Y and X < 0. From (2.1) we see that

Ψ(u−X)−Ψ(u− Y ) = b(Y −X) +

∫ ∞
0

e−(u−Y )y(1− e−(Y−X)y)λ(dy), u ≥ Y.
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Hence supu≥Y |Ψ(u − X) − Ψ(u − Y )| ≤ Ψ(Y − X). From this and Eh0
Zp
≤ EhZp we

obtain that

sup
u≥EhZp

|Ψ(u− Eh0
Zp

)−Ψ(u− EhZp )| ≤ Ψ(EhZp − Eh0
Zp

).

Thus the spectral decomposition yields that

‖Ψ(hZp − Eh0
Zp

)f‖ ≤ ‖Ψ(hZp − EhZp )f‖+ Ψ(EhZp − Eh0
Zp

)‖f‖.

Then the theorem follows together with (5.40), since ε is arbitrary. qed

We have the immediate consequences below.

Theorem 5.14 Let Assumptions (U2) be satisfied, and suppose that V is relatively

bounded with respect to Ψ(h0
Zp) with a relative bound strictly less than 1. Moreover,

assume (5.19).

(1) Let Assumption (A2) be satisfied. Then HΨ
Zp is self-adjoint on D

(
Ψ
(
hZp
))

and

essentially self-adjoint on any core of Ψ
(
hZp
)
. In particular, under Assumption

(A3) the operator HΨ
Zp is essentially self-adjoint on C∞0 (Rd).

(2) Let Assumption (A3) be satisfied. Then the functional integral representation of

e
−tHΨ

Zp is given by (5.10).

Proof. (1) is trivial. (2) is proven in a similar way to the approxiamtion argument

in Step 4 of Theorem 3.8. qed

A Appendix

Let F ∈ C2(R). The differential of the transformed process dF (Lt) can be computed

by the following Itô formula.

Proposition A.1 (Itô formula) Let Ft = σ((Bs, N
β
s ), 0 ≤ s ≤ t, β = 1, ..., p) be the

natural filtration. Consider

Lit =

∫ t

0

f i(s, ω)ds+

∫ t

0

gi(s, ω) · dBs +

p−1∑
β=1

∫ t+

0

hiβ(s, ω)dNβ
s , i = 1, ..., n

where f i(·, ω) ∈ L1
loc(R) a.s, gi ∈ Eloc and hiβ(s, ω) is adapted with respect to Ft, left

continuous in s and
∫ t+

0
|hiβ(s, ω)|dNβ

s < ∞ a.s. Take F ∈ C2(Rn). Then for the
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random process F (Lt) the expression

F (Lt)− F (L0) =
n∑
i=1

∫ t

0

Fi(Ls)f
i(s)ds+

n∑
i,j=1

∫ t

0

1

2
Fij(Ls)g

i(s) · gj(s)ds

+
n∑
i=1

∫ t

0

Fi(Ls)g
i(s) · dBs +

p−1∑
β=1

∫ t+

0

(F (Ls− + hβ(s))− F (Ls−))dNβ
s

holds. Here Fi = ∂iF and Fij = ∂i∂jF .

Furthermore, the following form of the product rule holds.

Proposition A.2 (Product rule) Let (Lt)t≥0 and (Mt)t≥0 be two random processes.

Then LtMt − L0M0 =
∫ t

0
dLs ·Ms +

∫ t
0
Ls · dMs +

∫ t
0
dLs · dMs, computed by the rules

dtdt = 0, dBµ
t dt = 0, dBµ

t dB
ν
t = δµνdt, dN

α
t dN

β
t = 0, dNα

t dt = 0, and dNα
t dBt = 0.

For proofs see, for instance, [IW81, LHB09].
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