14 research outputs found

    Efficacy of Mucosal Cutting Biopsy for the Histopathological Diagnosis of Gastric Submucosal Tumors

    Get PDF
    Background: Gastrointestinal stromal tumors occur frequently. Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is performed commonly for diagnosis. However, the success rate of histological diagnosis is insufficient when the submucosal tumor (SMT) is small. Recently, another technique, mucosal cutting biopsy (MCB) has been reported. The aim of this study is to evaluate the efficacy and safety of MCB. Method: Between January 2012 and August 2018, MCB and EUS-FNA were performed 16 and 31 times for diagnosing gastric SMT. The diagnostic rate, the rate of successful immunohistochemistry, and the safety were reviewed. Difficult locations for EUS-FNA were also evaluated. Results: The mean SMT sizes measured on MCB and EUS-FNA were 21.2 and 36.2 mm. The diagnostic rates of MCB and EUS-FNA were almost the same (88 vs. 81%), but successful immunohistochemistry was significantly higher in the MCB group (93 vs. 59%, p = 0.03). In the subgroup of SMTs < 20 mm, the successful histological diagnosis rate from EUS-FNA was relatively low. There were no complications. Failures of EUS-FNA were more frequent in the middle third of the stomach. Conclusions: MCB was an effective procedure for diagnosing gastric SMT, especially in the case of small SMTs located at the middle third of the stomach

    Repression of Somatic Genes by Selective Recruitment of HDAC3 by BLIMP1 Is Essential for Mouse Primordial Germ Cell Fate Determination

    No full text
    Summary: Primordial germ cells (PGCs) are fate determined from pluripotent epiblasts. Signaling pathways and transcriptional regulators involved in PGC formation have been identified, but detailed molecular mechanisms of PGC fate determination remains poorly understood. Using RNAi screening, we identified histone deacetylase 3 (HDAC3) as a regulator of PGC formation. Hdac3 deficiency resulted in decreased nascent PGCs in vitro and in vivo, and somatic developmental genes were de-repressed by Hdac3 knockdown during PGC induction. We also demonstrated BLIMP1-dependent enrichment of HDAC3 and deacetylation of H3 and H4 histones in the somatic developmental genes in epiblast-like cells. In addition, the HDAC3/BLIMP1-targeted somatic gene products were enriched in PGC determinant genes; overexpression of these gene products in PGC-like cells in culture resulted in repression of PGC determinant genes. We propose that selective recruitment of HDAC3 to somatic genes by BLIMP1 and subsequent repression of these somatic genes are crucial for PGC fate determination. : Mochizuki et al. find that targeted histone deacetylation of somatic genes by HDAC3-BLIMP1 represses gene expression, which ensures primordial germ cell fate determination
    corecore