85 research outputs found

    Electrical and optical properties of Ga-doped ZnO thin films deposited by DC magnetron sputtering

    Get PDF
    The electrical and optical properties of Ga-doped ZnO (GZO) thin film prepared by direct current (dc) magnetron sputtering were investigated. The GZO thin film was deposited on a glass substrate at a substrate temperature (Ts) of room temperature (RT), 150 °C, and 200 °C using DC power of 100 W and an Ar gas flow rate of 450 sccm. The thickness of films was maintained at about 200 nm by controlling the deposition rate of about 12.5 nm/minute. The result showed that the electrical properties improved with increasing Ts. The films deposited at Ts of 200 °C showed the lowest resistivity, highest hall mobility, and carrier concentration compared to other Ts. The average transmittance of the films in the visible range (380-750 nm) was approximately 86.04%. The value of the optical band gap (Eg) was approximately 3.8 eV. The results suggested that GZO films deposited by DC magnetron sputtering at Ts of 200 °C can be applied to transparent conducting oxide (TCO) as an electrode in optoelectronic applications such as solar cells, LEDs and display technology

    Massive expression of cysteine-containing proteins causes abnormal elongation of yeast cells by perturbing the proteasome

    Get PDF
    The enhanced green fluorescent protein (EGFP) is considered to be a harmless protein because the critical expression level that causes growth defects is higher than that of other proteins. Here, we found that overexpression of EGFP, but not a glycolytic protein Gpm1, triggered the cell elongation phenotype in the budding yeast Saccharomyces cerevisiae. By the morphological analysis of the cell overexpressing fluorescent protein and glycolytic enzyme variants, we revealed that cysteine content was associated with the cell elongation phenotype. The abnormal cell morphology triggered by overexpression of EGFP was also observed in the fission yeast Schizosaccharomyces pombe. Overexpression of cysteine-containing protein was toxic, especially at high-temperature, while the toxicity could be modulated by additional protein characteristics. Investigation of protein aggregate formation, morphological abnormalities in mutants, and transcriptomic changes that occur upon overexpression of EGFP variants suggested that perturbation of the proteasome by the exposed cysteine of the overexpressed protein causes cell elongation. Overexpression of proteins with relatively low folding properties, such as EGFP, was also found to promote the formation of SHOTA (Seventy kDa Heat shock protein-containing, Overexpression-Triggered Aggregates), an intracellular aggregate that incorporates Hsp70/Ssa1, which induces a heat shock response, while it was unrelated to cell elongation. Evolutionary analysis of duplicated genes showed that cysteine toxicity may be an evolutionary bias to exclude cysteine from highly expressed proteins. The overexpression of cysteine-less moxGFP, the least toxic protein revealed in this study, would be a good model system to understand the physiological state of protein burden triggered by ultimate overexpression of harmless proteins

    Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Get PDF
    A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO) films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1
    corecore