10,822 research outputs found

    Some aspects of the ecology of the leatherback turtle Dermochelys coriacea at Laguna Jalova, Costa Rica

    Get PDF
    The ecology and reproductive biology of the leatherback turtle (Dennochelys coriacea) was studied on a high-energy nesting beach near Laguna Jalova, Costa Rica, between 28 March and 8 June 1985. The peak of nesting was between 15 April and 21 May. Leatherbacks here measured an average 146.6 cm straightline standard carapace length and laid an average 81.57 eggs. The eggs measured a mean 52.12 mm diameter and weighed an average of 85.01 g. Significant positive relationships were found between the carapace lengths of nesters and their clutch sizes and average diameter and weight of eggs. The total clutch weighed between 4.02 and 13.39 kg, and yolkless eggs accounted for an average 12.4% of this weight. The majority of nesters dug shallow (<24 cm) body pits and spent an average 81 minutes at the nest site. A significant number of c1utcbes were laid below the berm crest. In a hatchery 42.2% of the eggs hatched, while in natural nests 70.2% hatched. The average hatchling carapace length was 59.8 mm and weight was 44.6 g. The longevity of leatherback tracks and nests on the beach was affected by weather. One nester was recaptured about one year later off the coast of Mississippi, U.S.A. Egg poaching was intense on some sections of the Costa Rican coast. Four aerial surveys in four different months provided the basis for comparing density of nesting on seven sectors of the Caribbean coast of Costa Rica. The beach at Jalova is heavily used by green turtles (Chelonia mydJJs) after the leatherback nesting season. The role of the Parque Nacional Tortuguero in conserving the leatherback and green turtle is discussed.(PDF file contains 20 pages.

    Investment Timing, Liquidity, and Agency Costs of Debt

    Get PDF
    This paper examines the effect of debt and liquidity on corporate investment in a continuous- time framework. We show that stockholder-bondholder agency conflicts cause investment thresholds to be U-shaped in leverage and decreasing in liquidity. In the absence of tax effects, we derive the optimal level of liquid funds that eliminates agency costs by implementing the first-best investment policy for a given capital structure. In a second step we generalize the framework by introducing a tax advantage of debt, and we show that an interior solution for liquidity and capital structure optimally trades off tax benefits and agency costs of debtinvestment timing; liquidity; agency costs of debt; capital structure; real options

    Chelonia mydas

    Get PDF
    Number of Pages: 4Integrative BiologyGeological Science

    Factor Substitution and Unobserved Factor Quality in Nursing Homes

    Get PDF
    This paper studies factor substitution in one important sector: the nursing home industry. Specifically, we measure the extent to which nursing homes substitute materials for labor when labor becomes relatively more expensive. From a policy perspective, factor substitution in this market is important because materials-intensive methods of care are associated with greater risks of morbidity and mortality among nursing home residents. Studying longitudinal data from 1991-1998 on nearly every nursing home in the United States, we use the method of instrumental variables (IV) to address the potential endogeneity of nursing home wages. The results from the IV models are consistent with the theory of factor substitution: higher nursing home wages are associated with lower staffing, greater use of materials (specifically, physical restraints), and a higher proportion of residents with pressure ulcers. A comparison of OLS and IV results suggests that empirical studies of factor substitution should take into account unobserved heterogeneity in factor quality.

    Inertial and retardation effects for dislocation interactions

    Get PDF
    A new formulation for the equation of motion of interacting dislocations is derived. From this solution it is shown that additional coupling forces, of kinetic and inertial origin, should be considered in Dislocation Dynamics (DD) simulations at high strain rates. A heuristic modification of this general equation of motion enables one to introduce retardation into inertial and elastic forces, in accordance with a progressive rearrangement of fields through wave propagation. The influence of the corresponding coupling terms and retardation effects are then illustrated in the case of dislocation dipolar interaction and coplanar annihilation. Finally, comparison is made between the modified equation of motion and a precise numerical solution based on the Peierls-Nabarro Galerkin method. Good agreement is found between the Peierls-Nabarro Galerkin method and the EoM including retardation effects for a dipolar interaction. For coplanar annihilation, it is demonstrated that an unexpected mechanism, involving a complex interplay between the core of the dislocations and kinetics energies, allows a renucleation from the completely annihilated dislocations. A description of this phenomenon that could break the most favourable reaction between dislocations is proposed

    Atomic displacements accompanying deformation twinning: shears and shuffles

    Get PDF
    Deformation twins grow by the motion of disconnections along their interfaces, thereby coupling shear with migration. Atomic-scale simulations of this mechanism have advanced to the point where the trajectory of each atom can be followed as it transits from a site in the shrinking grain, through the interface, and onwards to a site in the growing twin. Historically, such trajectories have been factorised into shear and shuffle components according to some defined convention. In the present article, we introduce a method of factorisation consistent with disconnection motion. This procedure is illustrated for the case of {10-12} twinning in hcp materials, and shown to agree with simulated atomic trajectories for Zr.Peer ReviewedPostprint (published version

    Modelling two-dimensional Crystals with Defects under Stress: Superelongation of Carbon Nanotubes at high Temperatures

    Full text link
    We calculate analytically the phase diagram of a two-dimensional square crystal and its wrapped version with defects under external homogeneous stress as a function of temperature using a simple elastic lattice model that allows for defect formation. The temperature dependence turns out to be very weak. The results are relevant for recent stress experiments on carbon nanotubes. Under increasing stress, we find a crossover regime which we identify with a cracking transition that is almost independent of temperature. Furthermore, we find an almost stress-independent melting point. In addition, we derive an enhanced ductility with relative strains before cracking between 200-400%, in agreement with carbon nanotube experiments. The specific values depend on the Poisson ratio and the angle between the external force and the crystal axes. We give arguments that the results for carbon nanotubes are not much different to the wrapped square crystal.Comment: 12 pages, 6 eps figures, section VI added discussing the modifications of our model when applied to tube
    corecore