Stefan Hirth & Marliese Uhrig-Homburg

Investment Timing, Liquidity, and Agency Costs of Debt

Finance Research Group
Investment Timing, Liquidity, and Agency Costs of Debt *

Stefan Hirth
Aarhus School of Business
Aarhus University

Marliese Uhrig-Homburg
Chair of Financial Engineering and Derivatives
Universität Karlsruhe (TH)

May 5, 2009

*Corresponding Author: Stefan Hirth, Aarhus School of Business, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Phone +45 89 48 63 65, Fax +45 89 48 66 60, E-mail <stefanh@asb.dk>. Previous versions of this paper were entitled “Investment Timing and Endogenous Default”. The authors would like to thank Jamie Alcock, Nicole Branger, Marc Chesney, Christian Riis Flor, Günter Franke, Robert Gillenkirch, Dirk Hack Barth, Pernille Jessen, Lutz Johanning, Peter Løchte Jørgensen, Karl Ludwig Keiber, Olaf Korn, Nicos Koussis, Charlene Tan Lee, Joachim Moser, Johannes Raaballe, Hendrik Scholz, Xia Su, Suresh M. Sundaresan, and Uwe Walz, as well as seminar participants in Aarhus, Göttingen, Konstanz, and Zurich, and conference participants at European Winter Finance Summit 2008 Hemsedal, Australasian Finance & Banking Conference 2007 Sydney, Quantitative Methods in Finance Conference 2007 Sydney, European Financial Management Association 2007 Vienna, Verband der Hochschullehrer für Betriebswirtschaft 2007 Paderborn, Campus for Finance 2007 Vallendar, Financial Management Association Annual Meeting 2006 Salt Lake City, German Finance Association 2006 Oestrich-Winkel, Financial Management Association European Conference 2006 Stockholm, Swiss Society for Financial Market Research 2006 Zurich, Workshop Credit Risk Management 2005 Obergurgl, and OR 2005 Bremen, for their helpful comments and suggestions.
Investment Timing, Liquidity, and Agency Costs of Debt

Abstract

This paper examines the effect of debt and liquidity on corporate investment in a continuous-time framework. We show that stockholder-bondholder agency conflicts cause investment thresholds to be U-shaped in leverage and decreasing in liquidity. In the absence of tax effects, we derive the optimal level of liquid funds that eliminates agency costs by implementing the first-best investment policy for a given capital structure. In a second step we generalize the framework by introducing a tax advantage of debt, and we show that an interior solution for liquidity and capital structure optimally trades off tax benefits and agency costs of debt.

JEL Classification: G13, G31, G32

Keywords: investment timing, liquidity, agency costs of debt, capital structure, real options
I Introduction

Why do firms hold liquid funds? Most explanations are related to financing constraints. For example, Almeida, Campello, and Weisbach (2004) state that if a firm is financially unconstrained, corporate liquidity becomes irrelevant. However, this is only true for an all-equity firm, whereas a levered firm’s investment policy can be subject to agency conflicts. In this paper we show that when there is existing debt, liquid funds may mitigate stockholder-bondholder conflicts. This leads to a stand-alone rationale for cash holdings, even if the firm’s stockholders are financially unconstrained.

More precisely, the level of corporate liquidity influences the relation between leverage and investment in a non-trivial way. An intuitive guess might be that the investment policy distortions due to stockholder-bondholder conflicts increase in the firm’s leverage. However, we show that this only proves correct in two extreme cases: A firm without cash holdings or a firm with sufficient cash holdings to cover the whole investment amount. In contrast, for the more realistic case of an intermediate level of liquid funds, the relation between leverage and investment turns out to be non-monotonic. We capture agency conflicts of both underinvestment and overinvestment in a unified analytic framework, in which we can isolate their respective pure forms for the two mentioned extreme cases. Thus, we show that the firm’s endogenous choice of its level of liquid funds can be the key factor that determines the effect of existing debt on investment timing.

The underinvestment problem was first treated explicitly by Myers (1977): When debt is in place, it can be optimal from the stockholders’ perspective to forgo investment opportunities that would be favorable for an all-equity firm, since the contributed investment amount is beneficial for the bondholders as well.\(^1\) In our model, whenever the firm does not have any free liquid funds, the whole investment amount has to be injected by the stockholders. This corresponds to a pure asset expansion case and induces underinvestment.

\(^1\)Subsequently, the underinvestment issue has been examined by many other authors, see for example Mello and Parsons (1992), who model the operating policy of a levered mine in a continuous-time dynamic approach, Mauer and Ott (2000), who analyze optimal capital structure and mitigation of agency problems, or a recent paper by Moyen (2007) for an analysis of debt maturity and underinvestment.
The opposite problem of overinvestment as a consequence of debt financing is usually related to the asset substitution problem based on Jensen and Meckling (1976).2 In our model, this arises when the firm’s liquidity is sufficient to allow investment using internal funds only. Then, no additional capital is needed and pure asset substitution can take place, in the sense that the risk-free liquid funds are replaced by a risky investment project. This bears incentives to overinvest, since the stockholders are willing to invest in projects that would not be pursued from a total firm perspective.

As a consequence, we can show that the resulting investment threshold for a levered firm, i.e., the level of project value required for investment to take place, is strictly decreasing in the firm’s liquid funds. Since the two extreme cases mentioned are characterized by underinvestment and overinvestment, respectively, there is an interior level of liquid funds that implements the investment policy of an all-equity firm.

In our continuous-time dynamic investment timing framework, the impact of liquidity on investment is not driven by financing constraints stemming from transaction costs or information asymmetries.3 Instead, we assume symmetric information, which allows issuance of fairly priced securities and excludes financing constraints. Thus, the non-existence of binding contracts on investment policy is the only friction in our model. We assume that the firm is managed by an entrepreneur as its sole stockholder. Furthermore, we consider a firm with a proprietary project, so there are no effects of competition on product markets.4 Therefore we can focus exclusively on the implications of the level of liquid funds for the stockholder-bondholder conflict and thus for the firm’s investment timing decision.5

2One recent example is the paper by Mauer and Sarkar (2005), who analyze overinvestment in the context of a conditional debt contract.

3A large strand of literature, in contrast, does deal exactly with the impact of financing constraints on investment policy. An early example is the empirical study by Fazzari, Hubbard, and Petersen (1988). Recent approaches by Boyle and Guthrie (2003), Hirth and Uhlig-Homburg (2007), and Lyandres (2007) are more related to our paper since they also model investment timing and therefore can capture overinvestment as well, in their case however resulting from financing constraints.

4See Grenadier (2002) and Jou and Lee (2008) for an incorporation of competition in a similar framework.

5See Opler, Pinkowitz, Stulz, and Williamson (1999) for a more detailed discussion of the possible determinants of the optimal level of liquid funds mentioned in this paragraph, and Faulkender and Wang (2006), who show how the value of cash depends on its likely use.
We derive the following three implications: Firstly, the levered firm’s investment threshold is U-shaped in leverage, whenever a part of the investment amount is covered by internal liquid funds. This can be explained by the fact that risk-shifting incentives are more important for small amounts of debt, but for higher leverage the underinvestment argument becomes predominant. The second implication further emphasizes the central role of liquid funds: In the absence of tax effects and for a given leverage, investment thresholds are decreasing in liquidity. There is an optimal level of liquidity that eliminates agency costs by implementing the ex ante optimal investment policy. Generalizing the framework by introducing tax benefits as a reason why the firm initially chooses a positive amount of debt, we derive the third implication: The importance of the level of liquidity remains valid, and there is an interior combination of liquid funds and leverage that trades off tax benefits and agency costs of debt. It should therefore be observable that especially firms with significant growth opportunities have a target level of liquid funds, even if they are financially unconstrained.

In fact, already Myers (1977) suggested in his seminal article that a restriction on dividends, thus retaining cash for future investment, might be a way to mitigate the underinvestment problem, and he contrasted the benefits of this idea with the Jensen and Meckling (1976) problem. However, to our knowledge this comment has not led to subsequent research dealing with under- and overinvestment that would explicitly allow the firm to vary its level of liquid funds upon debt issuance in order to endogenously mitigate agency problems.

There are other authors who discuss both under- and overinvestment in a unified modelling framework, without however emphasizing the role of liquid funds in this context. Similar to our paper, Childs, Mauer, and Ott (2005) attribute the contrary investment situations of asset expansion and asset substitution to under- and overinvestment, respec-

6 An empirical study by Billett, King, and Mauer (2007) shows that debt covenants, in particular dividend restrictions, can reduce agency conflicts on the exercise of growth options.

7 An article by Morelec (2001) discusses the liquidity of existing assets and implications for agency costs and capital structure. However the focus is not on financing investment, but on disinvestment in order to finance the firm’s continued operation. An empirical study by Bates (2005) shows that the proceeds of subsidiary sales are retained more frequently if there are future growth opportunities, though this may cause agency costs of overinvestment.
tively. In contrast to our approach, their asset side before investment is exogenous. Thus, the firm cannot influence whether it is in a regime of asset expansion or asset substitution. Analyzing the dynamic adjustment of debt levels and debt maturity, Childs, Mauer, and Ott (2005) find that agency costs become insignificant if dynamic adjustment is possible, while Titman and Tsyplakov (2007) show that agency costs can remain significant, if the stockholders choose a recapitalization policy that is suboptimal from a total firm perspective. Parrino and Weisbach (1999) examine the magnitude of under- and overinvestment and their sensitivity on firm characteristics within a simulation study. These authors conclude that the agency costs of debt as such are too small to explain capital structure decisions for the average firm. But especially for high-risk firms, they find that the disregard of agency costs can lead to a significant loss in firm value. In our paper, we have an entrepreneurial firm with a high-risk project in mind. Therefore we also consider agency costs to be an important factor for the decisions of such a firm.

Two recent papers elaborate on the fact that agency costs of both under- and overinvestment can be mitigated if a part of the investment amount is financed by a new debt issue upon investment: Sarkar (2007) shows that depending on the relative importance of tax benefits and bankruptcy costs, the stockholders’ optimal ex post policy does generally not eliminate the agency costs of debt. Lyandres and Zhdanov (2008) separate over- from underinvestment and focus on the effect of the leverage level on the firm’s investment timing. They illustrate a different rationale for overinvestment: Instead of focusing on the asset-substitution problem, they show that there can be overinvestment due to the threat of costly default, which reduces the value of waiting.

Debt financing is a time-consuming process, whereas holding cash ensures the full investment timing flexibility. This could be a possible argument precluding a new debt issuance simultaneously with the ex ante uncertain point in time when investment takes place. It is often assumed that cash holdings and debt offset each other and only the net debt of the firm should matter. However, as Gamba and Triantis (2008) show, in some situations a firm should rather increase its cash holdings than reduce its debt. In their setting, this can for example be the case if debt issuance costs exceed the costs of holding liquid funds. We
concentrate on the extreme case with no additional debt issuance during the model horizon, which could be interpreted as infinitely high debt issuance costs. But even if there is only some delay between debt issuance and possible investment, this would justify liquid funds as a useful tool to both ensure investment timing flexibility and mitigate agency conflicts.

This paper is organized as follows: In Section II we set up our modelling framework. In Section III we analyze the levered firm’s investment threshold, and we derive the optimal amount of liquid funds given an exogenous capital structure and no tax effects. Then we discuss the interaction of liquid funds and capital structure in Section IV given that there is a tax advantage of debt financing. Section V relates the implications of our work to existing literature. Section VI concludes.

II Model

A Framework

We consider a partially debt-financed firm at time t that holds the perpetual rights worth $F^o(V)$ to a project whose value V follows the geometric Brownian motion

$$dV = (\mu - \delta)V dt + \sigma V dW$$

where μ, δ, and σ are constant parameters and W is a Wiener process. The superscript o denotes the levered firm before investment, in contrast to other states of the firm that will be introduced below. Besides the project rights, the firm holds an amount X in liquid funds on a money market account.

The firm does not have any further assets in place besides the project rights and the liquid funds. This describes a realistic situation for an entrepreneurial firm in its start-up phase: An entrepreneur has a unique idea for a project. She then becomes the founder.

8One could also think of some existing assets that are not explicitly modelled since their dynamics are
of a firm and is deciding upon the financing policy for her project rights. We assume that she will issue a certain amount of debt and become the stockholder of a levered firm. Moreover, she may provide some liquid funds to the firm in order to cover a part of the future investment expenses.

While the liquid funds remain constant until investment takes place, they generate a risk-free income stream rX that is distributed to the entrepreneur, where r is the constant risk-free interest rate. This may be interpreted as a debt covenant preventing dividend payments to drive the firm’s cash holdings below X.

At any point in time, the entrepreneur has the option to exercise the project rights. The investment requires a total amount of I, and we assume $X \in [0, I]$. Therefore the entrepreneur has to provide the missing amount $I - X$ needed to launch the project and to change the firm’s asset side from $F^a(V) + X$ to V. After investment the project provides a cash-flow stream of δV, therefore there are opportunity costs of waiting, and the firm will invest as soon as a critical project value V^I, the investment threshold, is exceeded. This threshold determines the firm’s investment timing policy, since ceteris paribus investment will take place earlier given that the firm decides to invest at a lower threshold.

The extreme case of $X = 0$ can be described as pure asset expansion: The whole investment amount has to be contributed by the entrepreneur, which leads to a substantial increase in total firm value. In contrast, the case of $X = I$ can be described as pure asset substitution: There is no capital inflow upon investment, but the risk-free returns of the liquid funds are substituted by the risky project returns. For intermediate values of $X \in (0, I)$, we can model a wide variety of investment conditions.

The debt structure consists of one perpetual coupon bond with a continuous coupon only of second-order importance for the investment timing problem analyzed here. A related article by Mauer and Sarkar (2005) models a similarly reduced firm consisting only of an investment option and a conditional debt contract.

9There are several reasons why one could assume that the liquid funds yield a lower return than r, for example taxation of interest income. For expositional simplicity, we do not model such frictions in the paper. While the arguments in Section III do not require taxes at all, we have verified that the qualitative results in Section IV remain unchanged if the liquid funds only yield $(1 - \nu) r X$, where the case $\nu = \tau$ corresponds to an equal taxation of debt coupon payments (introduced later) and interest income as the only reason for a lower return on X.

6
stream of C. While we first take the debt structure as given, we will later also discuss the debt issuance decision. Assuming a simple tax environment where coupon payments are tax-deductible at the firm level, the after-tax debt service is $(1 - \tau)C$, where τ is the corporate tax rate.\footnote{Similar to Leland (1994) and Mauer and Sarkar (2005), we assume that the firm always receives the tax benefits when it is solvent, regardless of its current operating income.} Debt service is partly covered by the entrepreneur’s income stream rX from the liquid funds. However, the remaining amount of

\begin{equation}
(1 - \tau)C - rX,
\end{equation}

which is constant over time as long as the firm is in state o, has to be contributed by the entrepreneur. The total value of the entrepreneur’s claim $E^o(V)$ and the bondholder’s claim $D^o(V)$ is

\begin{equation}
E^o(V) + D^o(V) = F^o(V) + X + T^o(V),
\end{equation}

where $T^o(V)$ denotes the value of tax benefits. Note that the entrepreneur will never have a reason to default before investment if the income from the firm’s liquid funds is sufficient to cover the required payment, i.e., if Eq. (2) is negative.

However, if Eq. (2) is positive, then the firm declares bankruptcy as soon as the entrepreneur decides to no longer provide the necessary payments. This is the case as soon as a critical project value of V^o_B is underrun. Then the entrepreneur has no more rights or obligations in the firm, and the former bondholder receives all the firm’s assets worth

\begin{equation}
E^e(V) = F^e(V) + X.
\end{equation}

The superscript e is used to indicate the state of the all-equity firm before investment. Note that we model no direct costs of bankruptcy, which is only for the sake of simplicity and could be easily incorporated in our framework. Still, the value of the project rights $F^e(V)$ generally differs from $F^o(V)$ because the former bondholder, now stockholder of an all-equity firm, will adopt an investment timing policy V^e_I that can be different from
the levered firm’s policy V_i^o.

In contrast, if the critical project value V_i^o is exceeded before bankruptcy has been declared, the project is launched. After investment the firm’s assets consist solely of the project V providing a cash-flow stream of δV, which the entrepreneur receives as a dividend after the net coupon stream, i.e.,

\begin{equation}
\delta V - (1 - \tau)C.
\end{equation}

In case of $\delta V - (1 - \tau)C < 0$, the entrepreneur has to contribute the remaining part of the coupon in order to avoid triggering default. The firm’s balance in state i is

\begin{equation}
E^i(V) + D^i(V) = V + T^i(V),
\end{equation}

where the superscript i denotes the state of the firm after \textit{investment}. Once the investment project has been launched, the evolution of the asset value follows an exogenous process given by Eq. (1), and the only decision remaining to the entrepreneur is to declare bankruptcy by not paying the coupons anymore. This will be the case as soon as a critical project value of V_i^B is underrun. Similar to the new investment policy in state e, the default policy V_i^B after investment can be different from the default policy before investment V_o^B.

When the firm after investment (state i) declares bankruptcy, the former bondholder takes over the assets worth V and becomes the new stockholder of an all-equity firm, therefore we have

\begin{equation}
E^{ie}(V) = V,
\end{equation}

where the superscript ie denotes the state of the all-\textit{equity} firm after \textit{investment}. We end up in the same situation when the all-equity firm (state e) eventually launches the investment project. However, note that in the latter case the former bondholder has to provide the missing amount $I - X$ for the transition from state e to ie, while this has been the entrepreneur’s responsibility at the transition from state o to i.
The transitions from one state to another contingent on the evolution of the project value V are visualized in Fig. 1.

[Fig. 1]

B Basic claims

In order to derive solutions for the entrepreneur’s and bondholder’s claims in the different states, we evaluate three basic cash-flow types, which will form the building blocks of all the solutions in the following subsections. Once their values are given, the entrepreneur’s and bondholder’s claims can be viewed as a portfolio of these three basic claims, which allows convenient representations and insightful interpretations.

To define the cash flows of our basic claims, we assume that the current project value V is between a lower bound of V_B, interpreted as a bankruptcy threshold, and an upper bound of V_I, interpreted as an investment threshold, with $V_B < V_I$. A lower bound of $V_B = 0$ means that default can never occur, which is due to the properties of the stochastic process in Eq. (1). Similarly, an upper bound of $V_I = \infty$ means that there is no investment opportunity.

We denote by $B_I(V; V_B, V_I)$ the value of a claim that pays off 1 as soon as V_I is reached and becomes worthless at V_B. Besides that it yields no intermediate payments. Given that the risk inherent in V can be replicated by traded securities, it can be shown that B_I satisfies the ordinary differential equation

$$\frac{1}{2} \sigma^2 V^2 (B_I)_{VV} + (r - \delta) V (B_I)_V = r B_I \quad \forall V \in [V_B, V_I]$$

with $(B_I)_V$ and $(B_I)_{VV}$ denoting first and second derivatives with respect to V, respectively. Solving subject to the boundary conditions $B_I(V_B; V_B, V_I) = 0$ and $B_I(V_I; V_B, V_I) =$

9

11 This can be seen as an time-homogenous extension of Ericsson and Reneby (1998), who present building blocks for bond valuation given only a lower (bankruptcy) threshold, to a situation with both a lower and an upper bound, where the latter will be the investment threshold in our context.
1 yields the solution

$$B_I(V; V_B, V_I) = \begin{cases} 0, & \text{if } V_I = \infty \\ \left(\frac{V}{V_I} \right)^{\lambda_1}, & \text{if } V_B = 0 \text{ and } V < V_I < \infty \\ \frac{(V_B)^{2\lambda_1}(V_B^2 - (V_B)^2)^{\lambda_2}}{(V_I)^{2\lambda_1}(V_B^2 - (V_I)^2)^{\lambda_2}}, & \text{if } V_B > 0 \text{ and } V_B < V < V_I < \infty \end{cases}$$

with

$$\lambda_1 = \frac{1}{2} - \frac{r - \delta}{\sigma^2} + \sqrt{\frac{2r}{\sigma^2} + \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right)^2}$$

and

$$\lambda_2 = \frac{1}{2} - \frac{r - \delta}{\sigma^2} - \sqrt{\frac{2r}{\sigma^2} + \left(\frac{1}{2} - \frac{r - \delta}{\sigma^2} \right)^2}.$$

Similarly, $$B_B(V; V_B, V_I)$$ denotes the value of a claim that pays off 1 upon reaching $$V_B$$, however becomes worthless when the project value hits $$V_I$$. Besides that it also yields no intermediate payments. It satisfies the same differential equation as $$B_I$$, while the boundary conditions are $$B_B(V_B; V_B, V_I) = 1$$ and $$B_B(V_I; V_B, V_I) = 0$$. Its value is

$$B_B(V; V_B, V_I) = \begin{cases} 0, & \text{if } V_B = 0 \\ \left(\frac{V}{V_B} \right)^{\lambda_2}, & \text{if } V_I = \infty \text{ and } 0 < V_B < V \\ \frac{(V_I)^{2\lambda_1}(V_I^2 - (V_B)^2)^{\lambda_2}}{(V_B)^{2\lambda_1}(V_I^2)^{\lambda_2}(V_B)^{\lambda_2}}, & \text{if } V_I < \infty \text{ and } 0 < V_B < V < V_I. \end{cases}$$

The third claim with value $$B_O(V; V_B, V_I)$$ yields a stream of the risk-free rate $$r$$ as long as the project value stays in between $$V_B$$ and $$V_I$$. It can be shown to be worth

$$B_O(V; V_B, V_I) = 1 - B_I(V; V_B, V_I) - B_B(V; V_B, V_I).$$

Note that in order to implement a strategy that yields the risk-free rate as long as the project value remains within the interval $$(V_B, V_I)$$ and a payoff of 1 upon reaching either
bound, a capital investment of one monetary unit is needed. Therefore the three basic claims add up to 1.

These three basic claims can now be used in order to solve the model backwards. The value of the entrepreneur’s claim in the \(i.e \) state is already known to be \(V \). We will now first give the solutions to the \(e \) and \(i \) states, which are well-known from the literature. Afterwards we will use them to derive the values of the entrepreneur’s and bondholder’s claims in the levered firm before investment (state \(o \)), which is one of the contributions of this paper.

C All-equity firm’s investment decision

The assets of the firm after default (state \(e \)) as given by Eq. (4) consist of the project rights \(F^e(V) \) and the liquid funds \(X \). Since the firm after default corresponds to an all-equity firm with financially unconstrained stockholders, the firm’s liquid funds do not have an impact on the investment decision, and the project rights can be valued in a classical real-option framework.\(^\text{12}\) Before investment, they can be interpreted as a portfolio consisting of \((V^e_I - I)\) units of the basic claim \(B_I \) yielding one monetary unit upon investment. The resulting investment option value is

\[
F^e(V) = \begin{cases}
(V^e_I - I) \cdot B_I(V; 0, V^e_I), & \text{if } 0 \leq V \leq V^e_I \\
V - I, & \text{if } V > V^e_I.
\end{cases}
\]

The first-order condition

\[
F^e_V(V^e_I) = 1
\]

ensures that immediate investment is indeed optimal above the critical project value \(V^e_I \).

\(^{12}\)See McDonald and Siegel (1986) and Dixit and Pindyck (1994).
Solving for this investment threshold, we get

\[V^e_f = \frac{\lambda_1}{\lambda_1 - 1} \cdot I. \]

\[(11) \]

D Levered firm after investment

Similarly, existing literature provides solutions for the values of the entrepreneur’s and bondholder’s claims in the levered firm after investment (state \(i \)), when the firm’s liquid funds have been used up in order to launch the investment project, and there is no more optionality on the asset side.\(^{13}\)

We start with the value of the entrepreneur’s claim \(E^i(V) \). The entrepreneur’s position after investment consists of holding the project value and paying the net coupon stream until default, when they also lose their claim to the project value. Therefore the solution to \(E^i(V) \) is

\[(12) \quad E^i(V) = \begin{cases}
0, & \text{if } 0 \leq V \leq V^i_B \\
V - V^i_B \cdot B_B(V; V^i_B, \infty) - \frac{(1 - \tau)C}{r} \cdot B_O(V; V^i_B, \infty), & \text{if } V > V^i_B
\end{cases} \]

The first-order condition

\[(13) \quad E^i_{V}(V^i_B) = 0 \]

ensures that the bankruptcy threshold \(V^i_B \) indeed maximizes the value of the entrepreneur’s claim. It leads to the bankruptcy threshold

\[(14) \quad V^i_B = \frac{\lambda_2}{\lambda_2 - 1} \cdot \frac{(1 - \tau)C}{r}. \]

For a project value \(V \) above the bankruptcy threshold \(V^i_B \), the value of the bondholder’s claim \(D^i(V) \) can be interpreted as a portfolio of a claim that provides the payment \(V^i_B \)

\(^{13}\)See Black and Cox (1976) and Leland (1994).
at default, and a claim that pays a stream of C until default. Therefore the solution to $D^i(V)$ is

\[
D^i(V) = \begin{cases}
V, & \text{if } 0 \leq V \leq V^i_B \\
V^i_B \cdot B_B(V; V^i_B, \infty) + \frac{C}{\tau} \cdot B_O(V; V^i_B, \infty), & \text{if } V > V^i_B.
\end{cases}
\] (15)

Note that there is no new first-order condition; the bankruptcy threshold V^i_B is chosen by the entrepreneur and thus given by Eq. (14).

E Levered firm before investment

Having presented solutions for the e and i states, and thus for the boundaries of the o state, we are now ready to derive the values of the entrepreneur’s and bondholder’s claims in the levered firm before investment.

The value of the entrepreneur’s claim $E^o(V)$ in the levered firm before investment can be interpreted as a portfolio consisting of a cash-flow stream of $rX - (1 - \tau)C$, while neither investment nor default occurs, and a payment of $E^i(V^o_I) - (I - X)$ upon investment at V^o_I. Using the basic claims B_O and B_I, we derive the following closed-form expression for $E^o(V)$:

\[
E^o(V) = \begin{cases}
0, & \text{if } 0 \leq V \leq V^o_B \\
\left(X - \frac{(1 - \tau)C}{\tau}\right) \cdot B_O(V; V^o_B, V^o_I) + (E^i(V^o_I) - (I - X)) \cdot B_I(V; V^o_B, V^o_I), & \text{if } V^o_B < V < V^o_I \\
E^i(V) - (I - X), & \text{if } V \geq V^o_I
\end{cases}
\] (16)

In order to derive the optimal investment and bankruptcy thresholds, we have to consider the first-order conditions at the boundaries. The condition at V^o_I is

\[
E^o_{V_i}(V^o_I) = E^i_{V_i}(V^o_I),
\] (17)
which ensures that the resulting investment threshold V_I° indeed maximizes the value of the entrepreneur’s claim. Note that we thus assume that the firm follows the second-best investment policy after debt issuance. In Section IV we compare this to the first-best investment policy, i.e., the policy that maximizes the sum of the values of the entrepreneur’s and bondholder’s claims. If default is possible at all (i.e., if Eq. (2) and thus V_B° is positive), the second first-order condition

\[(18) \quad E_V^\circ (V_B^\circ) = 0\]

ensures that the resulting bankruptcy threshold V_B° also maximizes the value of the entrepreneur’s claim. In the case of $V_B^\circ = 0$, we do not need a second first-order condition. Then the value of the entrepreneur’s claim for $V \leq V_I^\circ$ reduces to

\[(19) \quad E^\circ (V) = X + (E^\circ (V_I^\circ) - I) \cdot B_I(V;0,V_I^\circ) - \frac{(1 - \tau)C}{r} \cdot (1 - B_I(V;0,V_I^\circ)),\]

where

\[B_I(V;0,V_I^\circ) = \left(\frac{V}{V_I^\circ}\right)^{\lambda_1}.\]

In this case, note that the first derivative $E_V^\circ (V)$ does not depend on the liquid funds X, and consequently the optimal investment threshold V_I° according to Eq. (17) is also independent of X. This makes sense, because there is no risk for the entrepreneur that the liquid funds X be transferred to the bondholder in the event of default before investment. Therefore, her investment decision is independent of the fraction of the investment amount held as liquid funds within the firm, although this fraction determines the additional amount $I - X$ she has to contribute.

Now we consider the value of the bondholder’s claim $D^\circ (V)$. It corresponds to a portfolio that consists of the right to receive $E^\circ (V_B^\circ)$ upon default, a stream of C while neither
default nor investment occurs, and \(D^i(V^o_I) \) upon investment. The solution for \(D^o(V) \) is

\[
D^o(V) = \begin{cases}
E^e(V), & \text{if } 0 \leq V \leq V^o_B \\
E^e(V^o_B) \cdot B_B(V; V^o_B, V^o_I) + \frac{C}{\tau} \cdot B_D(V; V^o_B, V^o_I) + D^i(V^o_I) \cdot B_I(V; V^o_B, V^o_I), & \text{if } V^o_B < V < V^o_I \\
D^i(V), & \text{if } V \geq V^o_I
\end{cases}
\]

For the no-default case, the first case disappears, and the second case reduces to

\[
D^o(V) = \frac{C}{\tau} \cdot B_D(V; V^o_B, V^o_I) + D^i(V^o_I) \cdot B_I(V; V^o_B, V^o_I),
\]

since the right to receive \(E^e(V^o_B) \) upon default has no value.

Note that there are no new first-order conditions, since the entrepreneur has the exclusive right to choose the investment and bankruptcy policies that are value-maximizing from her perspective. Therefore, both \(V^o_B \) and \(V^o_I \) result from the maximization of the value of the entrepreneur’s claim given by Eq. (16), captured by the conditions in Eq. (17) and Eq. (18).

III Underinvestment, overinvestment, and liquidity

In this section, we first discuss how the relation between the firm’s leverage and its investment policy is affected by the liquid funds. In a second step, we take the firm’s leverage as given and analyze the effect of the firm’s liquid funds as such on the investment policy. For both cases, we also discuss the sensitivity of our results to project risk. Throughout the current section, we abstract from tax effects (\(\tau = 0 \)), which implies \(T^i(V) = T^o(V) = 0 \). This allows us to focus solely on agency costs, i.e., the value effect of suboptimal investment. In Section IV we will then discuss the interaction of liquidity and capital structure choice given that there is a positive tax rate (\(\tau > 0 \)), which induces an advantage of debt financing and therefore a reason to initially issue debt.
When solving for the value of the entrepreneur’s claim $E^o(V)$ in Eq. (16), we have to determine at the same time the investment and bankruptcy policies of the levered firm before investment, V_I^o and V_B^o. Throughout this section we assume that the levered firm follows the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance. Since we do not consider tax effects in this section, the first-best policy would be to choose the investment threshold V_I^e of the all-equity firm. Therefore we compare the levered firm’s investment policy to that of an all-equity firm. Note that the investment threshold V_I^e of the all-equity firm given by Eq. (11) is not dependent on the firm’s liquid funds X. In contrast, the investment policy of the levered firm crucially depends on X.

In order to link the investment threshold and thus the investment timing decision of a levered firm to the notions of under- and overinvestment, we introduce the following definitions. Whenever the investment threshold V_I^o of the levered firm is higher than the benchmark investment threshold V_I^e of an all-equity firm, investment will ceteris paribus take place later, which we regard as underinvestment. On the other hand, if the levered firm chooses an investment threshold that is lower than the benchmark, we speak of overinvestment.

A Effect of leverage on investment policy

We first discuss the effect of leverage, measured by the debt coupon C, on the firm’s investment policy. As a starting point we take that an unlevered firm ($C = 0$) follows the investment policy V_I^e regardless of its level of liquid funds. However, Fig. 2 illustrates that the effect of positive leverage does depend on the firm’s cash holdings.

![Fig. 2](image)

Our numerical example uses a set of parameters given in Table 1. The absolute level of the project investment cost I is just a scaling factor. In fact, whenever we plot investment I.

14 These definitions can similarly be found e.g. in Childs, Mauer, and Ott (2005) and Lyandres and Zhdanov (2008).
thresholds, we normalize them by the unlevered firm’s investment threshold V^e_I, which is linear in I according to Eq. (11). The rather high volatility parameter σ and the high cash-flow rate δ relative to the risk-free interest rate r can be motivated by the fact that we are interested particularly in high-risk projects as they are typical for entrepreneurial firms. In particular the effect of varying project risk σ will be analyzed further in the following.

[Table 1]

For $X = 0$ we observe the pure asset expansion case: The entrepreneur is primarily concerned about the fact that the amount that she has to contribute to the firm also benefits the bondholder. Therefore she is reluctant to launch the investment project unless the project value is sufficiently favorable. As a consequence, the firm requires a higher project value for investment than an all-equity firm ($\frac{V^e_I}{V^e_f} > 1$). Thus the firm follows a policy that can be described as underinvestment, similar to the problem discussed by Myers (1977). This effect becomes more and more pronounced with increasing leverage. Therefore the investment threshold rises more and more above the unlevered firm’s level of V^e_I.

Next we discuss the case $X = I$, which is the pure asset substitution case first treated by Jensen and Meckling (1976). The value of the entrepreneur’s claim makes up only a part of the total firm value when there is debt in the firm. Therefore the entrepreneur bears relatively less risk than the owner of an all-equity firm when they substitute the risk-free returns of the liquid funds by the risky project returns. The entrepreneur should then be willing to engage in risk-shifting and invest even for a lower project value than an all-equity firm ($\frac{V^e_I}{V^e_f} < 1$). Thus she follows a policy that can be described as overinvestment. The higher the debt level, the more favorable will this policy be for the entrepreneur. Therefore worse and worse projects are accepted for increasing leverage. The investment threshold is strictly decreasing in C, with an inflection point when Eq. (2) changes signs and debt becomes risky (which is the case for $C = 5$ in the numerical example), until it hits the bankruptcy threshold (at $C = 22$). In this degenerate case, and for any even higher coupons C, the ϕ state disappears completely.
To summarize, for either of these pure cases of under- and overinvestment, respectively, we observe that the distortions in investment policy resulting from stockholder-bondholder conflicts are increasing in the firm’s leverage measured by the debt coupon C. This result is consistent with the simulation study by Parrino and Weisbach (1999). However, these authors explain under- and overinvestment in a static framework by different project characteristics, while their project is financed entirely with equity.

Both cases embody another effect that is isolated by Lyandres and Zhdanov (2008): The loss of the option value (from the stockholders’ perspective) in the event of default induces early exercise in order to increase equity value, i.e., the $X = 0$ threshold is rising less steeply and the $X = I$ threshold is falling faster due to this additional effect.

The combination of the $X = 0$ and the $X = I$ cases leads to an investment threshold that is U-shaped in leverage for any interior level of liquid funds. For a small debt coupon, Eq. (2) is negative, and default will never take place before investment. Note that in this region, there is no risk that the liquid funds X will be transferred to the bondholder before investment, and therefore the investment threshold is independent of X, as discussed in Section E. Therefore, all the thresholds in Fig. 2 coincide in the no-default region. Here we have a particularly strong form of risk-shifting: While there is no default risk before investment, the entrepreneur can actually transform the bondholder’s claim into a default-risky one by proceeding with the investment. This becomes more favorable, as the leverage level increases. Therefore the investment threshold in the no-default region is strictly decreasing in the debt coupon.

However, if there is default risk both before and after investment, then the investment decision depends on X: Investment becomes the more favorable, the more liquid funds there are already within the firm. For high X, the advantage of shifting risk to the bondholder still dominates. But for low X, it now matters that the additional funds needed for investment have to be provided by the entrepreneur and become part of the defaultable assets after investment. Therefore, the underinvestment motive observed in its pure form for $X = 0$ becomes more and more important. Consequently, we can observe that for increasing coupon levels, the investment threshold for intermediate X keeps first decreasing
after leaving the no-default region, but eventually reaches its minimum and starts rising again. For sufficiently high leverage, even the all-equity threshold V^e_I is exceeded.

From a practical perspective, the intermediate case might be the most realistic one: One part of the amount required for investment is covered by the liquid funds already in the firm, and the remaining part has to be injected upon investment. Therefore we conclude that also the U-shape of the investment threshold in leverage is the most realistic description of investment behavior. To our knowledge, this is an essentially new contribution of our paper. It results from the fact that we account for the role of the firm’s liquid funds for both over- and underinvestment.

B Effect of liquid funds on investment policy

Now we analyze the implications of the firm’s liquid funds as such on the investment policy. We claim that the investment threshold V^o_I of the levered firm should be decreasing in the firm’s liquid funds X: For low-liquidity firms, the properties of asset expansion and underinvestment ($\frac{V^o_I}{V^e_I} > 1$), explained above in its pure form for $X = 0$, are predominant. On the other hand, for high-liquidity firms the properties of asset substitution and over-investment ($\frac{V^o_I}{V^e_I} < 1$) found in its pure form for $X = I$ are predominant. Consequently, we expect that there will be an intermediate level X^*_0 of liquid funds (the subscript 0 indicates the $\tau = 0$ case discussed throughout Section III) for which the levered firm follows the all-equity firm’s investment policy ($\frac{V^o_I}{V^e_I} = 1$).

Fig. 3 shows that the levered firm’s investment threshold indeed has the proposed shape, i.e., it is decreasing in the firm’s liquid funds X. Again we use the set of parameters given in Table 1, and the debt coupon rate is set to $C_0 = 27$. The effect shown in Fig. 3 for the whole range of possible X values is also visible in Fig. 2 for this fixed C_0 and selected values of X. Moreover, Fig. 2 reveals that for $X = I$, the coupon level C_0 is indeed in the range where the investment threshold coincides with the bankruptcy threshold, which is where the threshold is pulled down to at the right margin of Fig. 3. There is an optimal
amount of liquid funds $X_0^* = 64.51$ for which the levered firm follows the all-equity firm’s investment policy ($V_{I}^p = V_{I}^e$). Otherwise, the firm chooses an investment policy that is suboptimal from a first-best perspective.

C Effect of project risk on investment policy

Intuitively, we should expect that project risk spurs the entrepreneur’s incentives to over-invest, since risk-shifting becomes even more attractive. However, would this also mean that whenever the investment threshold is above the first-best level, the underinvestment problem is mitigated by increasing project risk?

[Fig. 4]

Indeed, Fig. 4 shows that the levered firm’s investment threshold relative to the all-equity firm’s threshold is decreasing in the project value volatility σ in areas with overinvestment as well as underinvestment. This relation shown for the case of $X = X_0^*$ and varying C in the first graph of Fig. 4 holds similarly for any other level of liquid funds, including the two extreme cases of $X = 0$ and $X = I$: Even for $X = 0$ where there is underinvestment for any positive amount of debt (see Fig. 2), the underinvestment problem is mitigated for increasing project risk.

Besides reconfirming the negative relation of project risk and investment threshold, the second graph of Fig. 4 for the case of $C = C_0$ and varying X allows the following interpretation: Given a certain leverage level measured by C, the optimal amount of liquid funds X^* needed in order to implement the first-best investment policy V_{I}^e (i.e., the amount of liquid funds that yields $V_{I}^p/V_{I}^e = 1$) is decreasing in project risk: While the entrepreneur’s overinvestment incentives are increasing in project risk, her desire can be tamed by increasing the amount $I - X$ that she has to contribute to the investment. Therefore reducing X makes the entrepreneur more reluctant to invest early in risky projects. This can be used to counterbalance the effect of increasing project risk.

At this point, note that the preceding discussion has focussed on the relative investment threshold V_{I}^p/V_{I}^e. However, the investment threshold V_{I}^e of an all-equity firm is itself
strictly increasing in project risk σ.

That is the usual behavior expected from option pricing theory, since the value of waiting is increasing in σ, but contrary to the sensitivity of the relative investment threshold V^{e}_o/V^{e}_i.

Examining directly the absolute investment threshold V^{o}_i shows a more diverse picture: For low liquid funds, it is also increasing in σ. If e.g. $X = 0$, the entire investment amount has to be provided by the entrepreneur. Therefore the incentives are exactly those known from option pricing theory. The relative investment threshold V^{o}_i/V^{e}_i is still decreasing in σ due to the fact that the increase of V^{e}_i in σ is more pronounced than that of V^{o}_i. For the other extreme case $X = I$, the entrepreneur has risk-shifting incentives, since investment does not only mean to give up the value of waiting, but also to transform risk-free into risky assets. These incentives are obviously increasing in project risk, and they can be more important than the increasing value of waiting known from option pricing theory. Therefore, even the absolute investment threshold V^{o}_i of the levered firm can be decreasing in σ in this case.

D Agency costs

Now we analyze the agency costs that the firm suffers due to a suboptimal investment policy induced by existing debt. In this context the term ‘suboptimal’ refers to the total firm’s perspective. We determined the firm’s policy in Section E to be optimal from the entrepreneur’s point of view ex post, i.e., after debt is in place. However, ex ante, i.e., before debt is in place, it would be in the interest of the entrepreneur if she could credibly commit herself to the investment policy of an all-equity firm, since at that point in time, the debt contract will be set up according to the assumed investment policy. Therefore ex ante the entrepreneur maximizes the sum of the values of the entrepreneur’s and bondholder’s claims, i.e., total firm value, and it would be suboptimal not to commit to the all-equity firm’s investment policy. Consequently, agency costs arise since we assume that this ex ante commitment is not possible.

We define agency costs AC for a tax rate of $\tau = 0$ as the difference in total firm value
between an all-equity firm and a levered firm:

\[
AC_{\tau=0} = E^e(V) - [E^o(V) + D^o(V)] = F^e(V) - F^o(V).
\]

\(E^e(V), E^o(V),\) and \(D^o(V)\) are defined by Eq. (4), Eq. (16), and Eq. (20), respectively. The agency costs can then be understood as the part of all-equity firm value that is lost due to the suboptimal investment policy. Using Eq. (3), Eq. (4), and \(T^o(V) = 0\) for \(\tau = 0\), we get the last expression, which illustrates that the agency costs for \(\tau = 0\) exactly consist of the loss in option value due to the deviation from the all-equity investment policy.

As elaborated in Section B, the firm’s liquid funds have a crucial impact on the nature of investment distortions and consequently on the agency costs. A low-liquidity levered firm chooses a higher investment threshold than an all-equity firm, resulting in agency costs of underinvestment. On the other hand, the investment threshold of a high-liquidity levered firm is lower compared to that of an all-equity firm, resulting in agency costs of overinvestment. Only for an intermediate level of liquid funds \(X^*\) there are no agency costs.

[Fig. 5]

Fig. 5 shows the agency costs of debt for an initial project value of \(V_0 = 0.75V^e_I = 319.92\), which is also indicated by a horizontal line in Fig. 3. When we compare the two figures, we see that indeed only for \(X = X^*_0 = 64.51\) there are no agency costs. For lower levels of liquid funds, i.e., \(X < X^*_0\), the investment threshold \(V^o_I\), and thus the agency costs of underinvestment, are both increasing with distance from \(X^*_0\).

On the other hand, for \(X > X^*_0\) the investment threshold \(V^o_I\) is decreasing with distance from \(X^*_0\), and consequently the agency costs of overinvestment are increasing. However, since we assume an initial project value of \(V_0 = 0.75V^e_I < V^e_I\), a new situation arises if the firm’s liquid funds are high enough that the investment threshold \(V^o_I\) falls below the initial project value \(V_0\). Going back to Fig. 3, we observe that this happens for \(X > 83.83\). Then immediate investment will take place right after debt issuance, whereas the all-equity firm would prefer to postpone the investment. In all of these states, we do no longer have
possible future overinvestment, but actual overinvestment, and thus for all $X > 83.83$ the agency costs of overinvestment remain at

$$F^o(V) - (V - I),$$

which is a constant value and not dependent on X.

A similar result arises for an initial project value $V_0 > V^e_I$, for which the all-equity firm invests immediately: Below a certain level of liquid funds X, the investment threshold V_I^o exceeds V_0, and underinvestment takes place. Then the agency costs of underinvestment are

$$V - I - F^o(V).$$

They are increasing for decreasing liquid funds X, since $F^o(V)$ becomes less valuable with the distance of X and X_0^*. In contrast, for sufficiently high X we have $V_0 \geq V_I^o$, and both the levered firm and the all-equity firm invest immediately. In that case there are no agency costs.

IV Optimal liquidity and capital structure choice

Up to now, we have taken the firm’s capital structure as given. Although we have analyzed the effect of leverage on investment in Section A, we have not discussed the optimal amount of debt to be issued. In fact, our analysis throughout Section III omits tax effects, with the consequence that there is no model-endogenous reason at all to initially issue debt. In this context, the easiest way to avoid agency costs of debt is to remain an all-equity firm. Therefore we now generalize our analysis: We show that when there is a positive tax rate $\tau > 0$, providing a reason to issue debt due to tax benefits, then the relation of underinvestment, overinvestment, and liquidity elaborated in the previous section is preserved also under this more general setup. Moreover, we can now study the interaction of liquidity and capital structure choice as well as the trade-off between the value of tax benefits and the resulting agency costs upon debt issuance.
A Debt issuance

We first present the sequence of the debt issuance process. It takes place before state o is reached, and it is visualized by a dotted arrow in Fig. 1. Consider a financially unconstrained entrepreneur who owns the investment option worth $F^e(V)$ and follows the all-equity exercise policy. Preparing for debt issuance, the entrepreneur first provides an amount of liquid funds X. Then the unlevered firm’s balance is given by Eq. (4).

In the next step, debt with a coupon C is issued. The prospective bondholder provides a payment of $D^o(V)$ to the entrepreneur, and he correctly anticipates the value of his position in the firm after debt issuance. Upon debt issuance, the levered firm’s balance changes to Eq. (3). The entrepreneur’s optimization problem is to choose the liquid funds X and the capital structure C that maximize her gain upon debt issuance:

$$\max_{(X,C)} E^o(V) + D^o(V) - E^e(V) = F^o(V) - F^e(V) + T^o(V).$$

The left-hand side expresses that the entrepreneur receives a value of $E^o(V) + D^o(V)$ defined by Eq. (16) and Eq. (20), but he has to give up $E^e(V)$ defined by Eq. (4). This also illustrates that at this point, he is still interested in maximizing the total value of the entrepreneur’s and bondholder’s claims. The right-hand side allows the interpretation that he trades off the loss in investment option value $F^o(V) - F^e(V)$ due to a suboptimal exercise policy against the tax benefits of debt $T^o(V)$.

B Agency costs

At first it might seem reasonable to define the agency costs of debt similar to Section III by comparing the firm value after debt issuance to that of an all-equity firm. This would correspond to the gain upon debt issuance given by Eq. (22). However, now an all-equity firm can be made better off by issuing debt due to tax benefits. In particular, a firm that can credibly commit to the first-best investment policy will in general increase its value by issuing debt, although its value was not affected by the choice of (X,C) for
\(\tau = 0 \). Therefore it is no longer sufficient to compare investment option values before and after debt issuance, as was reasonable in Eq. (21). Rather, we have to take into account on the one hand under- and overinvestment costs driving the option value below that of an all-equity firm, and on the other hand costs due to foregone tax benefits. Our new definition of agency costs for \(\tau \geq 0 \) is

\[
AC_{\tau \geq 0} = [F_{(X_1,C_1)}(V) - F_{(X_2,C_2)}(V)] + [T_{(X_1,C_1)}(V) - T_{(X_2,C_2)}(V)]
\]

The new superscript \(o1 \) denotes values given that the first-best investment policy is followed after debt issuance, which means that when deriving the first-best investment threshold \(V^{o1}_I \) and bankruptcy threshold \(V^{o1}_B \), the new first-order condition

\[
E^{o1}_V(V^{o1}_I) + D^{o1}_V(V^{o1}_I) = E^{o1}_V(V^{o1}_I) + D^{o1}_V(V^{o1}_I)
\]

has to be used. In contrast, for the second-best investment policy (superscript \(o2 \), corresponds to \(o \) in the \(\tau = 0 \) case) the first-order condition at the investment threshold given by Eq. (17), i.e.,

\[
E^{o2}_V(V^{o2}_I) = E^{o2}_V(V^{o2}_I),
\]

is still used. In general, the bankruptcy thresholds will also be different, i.e., \(V^{o1}_B \neq V^{o2}_B \), although they are both chosen in the entrepreneur’s interest. That means that the first-order condition at the default threshold previously given by Eq. (18) can now be stated for the first- and second best cases, respectively, as

\[
E^{o1}_V(V^{o1}_B) = 0 \quad \text{and} \quad E^{o2}_V(V^{o2}_B) = 0.
\]

Even in the first-best case, when it is possible to credibly commit to the first-best investment policy before debt issuance, the default threshold is not allowed to be chosen beforehand. Otherwise it would be ex ante optimal to choose \(V^{o1}_B = V^{o2}_B = 0 \). In that case, the firm would never default, which would indeed maximize the value of tax benefits in our modeling framework, but it would no longer represent the characteristics of a risky-
debt financed firm. Only for the special case that the entrepreneur’s net payment given by Eq. (2) is negative, it is also ex post optimal from the entrepreneur’s perspective to choose $V_B^{o1} = V_B^{o2} = 0$. Note that even in that case, a default threshold of $V_B^i > 0$ after investment will be ex post optimal.

The subscripts in Eq. (23) emphasize that if the entrepreneur can credibly commit to the first-best investment policy before debt issuance, she does not only choose different investment and bankruptcy thresholds. She also chooses a combination of liquid funds and capital structure (X_1, C_1) that will generally be different from the combination (X_2, C_2) that she chooses for the second-best investment policy. Note that for $\tau = 0$, the second bracket in Eq. (23) disappears and $F_{(X_1,C_1)}^o(V)$ corresponds to $F^e(V)$, so we end up again at the definition given by Eq. (21).

C Numerical example and discussion

In a numerical example, we show the (X, C) combinations actually chosen in the first-best and second-best cases, as well as the value effect of debt issuance and the resulting agency costs of debt. Since option values and tax benefits are connected to firm values by Eq. (3) and Eq. (4), we can rewrite Eq. (23) as the difference in gains upon debt issuance:

$$AC_{\tau \geq 0} = [E_{(X_1,C_1)}(V) + D_{(X_1,C_1)}^{o1}(V) - E_{(X_1)}^e(V)] - [E_{(X_2,C_2)}(V) + D_{(X_2,C_2)}^{o2}(V) - E_{(X_2)}^e(V)]$$

(24)

Each of the square brackets represents the gain upon debt issuance relative to the all-equity firm for the first-best and second-best cases, respectively. The value of the first bracket (first-best case) as a function of the (X_1, C_1) combination chosen by the firm is shown in the first graph of Fig. 6, while in the second graph the value of the second bracket (second-best case) is shown as a function of (X_2, C_2). Parameter values are again given in Table 1. In contrast to Section III, we now use a positive tax rate of $\tau = 10\%$, and the firm chooses the optimal levels of both liquidity and debt endogenously.
For a firm that follows the first-best investment policy, it can be seen in the first graph of Fig. 6 that the maximum gain by debt issuance is reached for the maximum level of liquid funds, $X_1^* = I = 100$. While the liquid funds are not needed in order to implement a certain investment policy, they serve as a collateral and reduce the probability of default, and therefore the tax benefits can be enjoyed over a longer expected period of time. Since collateral causes no direct costs in our model, it is indeed optimal to use the maximum level of liquid funds. An interior level of debt (coupon $C_1^* = 30.02$) is chosen in order to achieve the maximum value of tax benefits, which is a well-known result from dynamic trade-off models.\(^{15}\)

The second graph of Fig. 6 shows the change in firm value upon debt issuance given that the firm follows the second-best investment policy. Still, the firm chooses an interior level of debt (coupon $C_2^* = 31.02$) close to that of the first-best case. However, as a result of the trade-off between tax benefits and agency costs of debt, the maximum gain by debt issuance is now reached for an interior level of liquid funds $X_2^* = 72 < I$.

As shown for the case without tax benefits in Fig. 5, the firm needs a certain level of liquid funds in order to implement a second-best investment policy that mitigates conflicts of interest between the entrepreneur and the bondholder as well as agency costs of under- and overinvestment. Therefore it makes sense that the level of liquid funds X_2^* is below the maximum level of liquid funds, $X_1^* = I = 100$, which is chosen by a firm that can credibly commit to the first-best investment policy. However, whereas minimizing the loss $F^e(V) - F^o(V)$ was the only effect in Section III, the value of tax benefits, $T^o(V)$, now has to be considered as well. Therefore the resulting X_2^* is on the other hand above the level of liquid funds X_0^* that the firm chooses for a similar leverage when there are no tax benefits, until the marginal gain in tax benefits equals the marginal agency costs.

The resulting maximum gains upon debt issuance are 14.23 in the first-best case, and 13.49 in the second-best case, respectively. We can then use Eq. (24) and calculate the actual agency costs of debt as the difference between the maximum gains upon debt issuance in the first- and second-best cases. In our numerical example this corresponds to a value of

\(^{15}\)See e.g. Leland (1994).
14.23 - 13.49 = 0.74. This means that the gain upon debt issuance in the second-best case is about 5% smaller than in the first-best case.

One could argue that the effect of the agency costs of debt is rather small. However, this is mainly due to the fact that the firm is significantly adjusting its liquid fund holdings in the second-best case. If the firm kept the maximum liquid fund holdings in the second-best case (i.e., $X_2 = 100$), there would be a maximum gain upon debt issuance of only 10.51.\footnote{In this case, the optimal second-best coupon would be $C_2 = 31.69$.} Then the agency costs of debt would amount to $14.23 - 10.51 = 3.72$. This means that the gain upon debt issuance in the second-best case would be more than 26% smaller than in the first-best case. Overall, our main conclusion from the analysis without tax benefits therefore remains valid: The firm’s liquid funds are an important factor determining the agency costs of debt, and they have to be chosen carefully in order to avoid a significant loss in value.

In order to ensure the stability of our results, we carried out a comparative statics analysis. We could confirm that the basic qualitative structure remains unchanged for a wide range of parameter values: While it is optimal to choose the maximum level of liquid funds in the first-best case, there is a significantly lower level of liquid funds in the second-best case. On the one hand, cash holdings help to increase tax benefits. However, there would be a tremendous overinvestment problem if the firm stuck to the first-best policy of holding the maximum level of liquid funds although it could not commit to the first-best investment policy.

V Implications and related work

The implications of our model for levered firms can be summarized as follows:

I. For a given interior level of liquidity, investment thresholds are U-shaped in leverage.

There is overinvestment for low leverage and underinvestment for high leverage.
II. For a given positive leverage, investment thresholds are decreasing in liquidity.

There is underinvestment for low liquidity and overinvestment for high liquidity.

III. An interior level of liquidity and leverage is optimal.

It trades off agency costs of debt (under- and overinvestment) and tax benefits.

Most existing models concentrate on either under- or overinvestment. Among those, the underinvestment effect of Myers (1977) is examined more frequently. For example, a recent paper by Moyen (2007) deals with that issue with respect to debt maturity.

In order to model the overinvestment effect, the literature usually introduces quite specific financing contracts. One recent example is the article by Mauer and Sarkar (2005). The authors assume that an otherwise all-equity firm issues a conditional debt contract, which means that the coupon payment required for a given lending amount is already specified ex ante, while the firm receives the lending amount at the time of investment. However, the authors do not allow the firm to choose between several alternative pre-specified debt contracts upon investment, but the exact level of leverage has to be specified ex ante.

Overinvestment can also be observed if a levered firm’s investment is partly financed using a new debt issue upon investment. This is examined in recent papers by Hennessy (2004), Lyandres and Zhdanov (2008), and Sarkar (2007). Hennessy (2004) demonstrates how the underinvestment problem can be mitigated by partly financing a new investment with secured debt. Lyandres and Zhdanov (2008) neutralize the underinvestment effect using a not necessarily optimal financing contract and focus on overinvestment incentives caused by the threat of costly default. In contrast, Sarkar (2007) derives the optimal expansion debt financing contracts from a first-best and second-best perspective.

There is one article by Childs, Mauer, and Ott (2005) that is particularly related to our paper: In their approach, investment is also partly financed using existing assets, which allows them to capture both under- or overinvestment in one model. Like Moyen (2007) and Titman and Tsyplakov (2007), the authors focus on the implications for the firm’s debt maturity structure. They develop a rich model, but in their analysis they have to confine themselves to the comparison of two specific parametrizations representing
either under- or overinvestment. It remains unclear which of the two firms’ characteristics are most relevant for the fundamentally different investment policies in either situation. Moreover, the two investment environments are exogenous for the firms. There is no endogenous decision on the asset side that would allow the firms to influence if they actually face under- or overinvestment.

In contrast, this decision is the main focus of our paper. We propose the firm’s liquid funds as an easily adjustable parameter on the asset side, which allows the firm to actively influence the trade-off between under- and overinvestment.

Our Implication I is driven by the fact that we allow for an interior level of liquidity. Whenever the investment situation is too close to a pure asset-expansion problem for low liquid funds, or a pure asset-substitution problem for high liquid funds, then there is monotonicity of the investment threshold in leverage. Since the above mentioned studies examine these boundary cases, they do not find investment thresholds that are U-shaped in leverage.

Our Implications II and III are both directly related to the level of liquid funds and its consequences for under- and overinvestment. Since the studies mentioned do not consider the firm’s liquid funds explicitly, they do not find these implications. Most related to our Implication III is the finding of Sarkar (2007): In the case where a levered firm’s investment is partly financed using a new debt issue, the second-best policy is also the result of a trade-off between agency costs of under- and overinvestment on the one hand, and tax benefits and bankruptcy costs on the other hand.

VI Conclusion

In this paper we have introduced the firm’s level of internal liquid funds as the key factor that determines the effect of existing debt on investment. We have shown that the distortions in investment policy resulting from stockholder-bondholder agency conflicts are increasing in the firm’s leverage. This holds for the extreme cases of a firm holding
no liquid funds, resulting in underinvestment, and enough liquid funds to finance the investment project, inducing overinvestment, respectively.

However, the two effects interact for any interior level of liquid funds, inducing an investment threshold that is U-shaped in leverage: Overinvestment due to asset substitution and risk-shifting incentives is more important for small amounts of debt. For higher leverage, the reluctance to provide additional value to the bondholder and thus the underinvestment argument becomes predominant. This is a central and new finding of our paper.

Note that we do not assume that the firm is financially constrained. In our case, underinvestment is not due to the firm’s difficulties to raise the investment amount on external capital markets. Rather, the entrepreneur as the firm’s sole stockholder decides willingly that she does not want to provide the amount since it also benefits the bondholder. In contrast, for a sufficiently high level of liquidity being held within the firm, the benefits to the entrepreneur that arise from asset substitution outweigh the cost from asset expansion, and overinvestment takes place.

Regarding the firm’s liquid funds as the decision variable for a given leverage level, we conclude that investment thresholds are decreasing in liquidity for levered firms. There is an optimal level of liquidity for which there is a trade-off between these two effects, and the ex ante optimal investment policy of an all-equity firm can be implemented. Even if the latter is not directly enforceable, we can therefore eliminate the agency costs of debt. For any other firm liquidity, the overall level of agency costs is determined by the degree of deviation from the optimal level of liquidity.

Increasing project risk leads to earlier investment. This holds both in cases where there is overinvestment and underinvestment, respectively. Consequently, whereas underinvestment can be mitigated for increasing project risk, the overinvestment problem becomes more severe when the entrepreneur has more incentives for risk-shifting. Again, the ex ante optimal investment policy can still be implemented by choosing an appropriate, i.e., a lower level of liquidity for increasing project risk.

In a second step of our analysis, we have examined the interaction of liquidity and capital
structure choice given that a tax advantage of debt makes leverage favorable. In that case, a firm that can credibly commit to a certain investment policy has a motivation to issue debt, and it will use the maximum level of liquid funds as a collateral for a higher value of tax benefits. In contrast, if the investment policy cannot be bound by contracts, the firm chooses an interior level of liquid funds in order to implement an investment policy that on the one hand mitigates conflicts of interest between the entrepreneur and the bondholder on investment policy and on the other hand helps to increase the value of tax benefits.

Overall, we have shed light on the effect of the firm’s level of liquidity for agency conflicts in levered firms. Thus, we hope to contribute to a broader understanding of the importance of liquidity beyond the context of financing constraints.
References

Table 1: Parameter values used in numerical examples.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project investment cost</td>
<td>$I = 100$</td>
</tr>
<tr>
<td>Project value volatility</td>
<td>$\sigma = 50%$</td>
</tr>
<tr>
<td>Project cash-flow rate</td>
<td>$\delta = 5%$</td>
</tr>
<tr>
<td>Riskless interest rate</td>
<td>$r = 5%$</td>
</tr>
</tbody>
</table>
Figure 1: Transition of states.
This figure shows the possible state transitions of the firm contingent on the evolution of the project value V. Starting in state o, the firm will invest as soon as V^o_0 is exceeded. Then the entrepreneur has to provide the amount $I - X$. In contrast, if the project value first falls below V^o_B, the firm will default. After default (state e), the former bondholder will be the owner of an all-equity firm, and he decides when to invest by providing the amount $I - X$ as soon as V^e_i is exceeded. On the other hand, default is still possible after investment (state i), and the firm will default if the project value falls below V^i_B. In either of the latter states, the next transition leads to state ie in which both investment and default have already taken place. The dotted arrow into state o represents the preceding debt issuance decision of an all-equity firm.
Figure 2: Levered firm’s investment threshold as a function of leverage.
The levered firm’s investment threshold V_i^o, normalized by the investment threshold of the unlevered firm V_i^e, is shown for different levels of liquid funds (solid lines) as a function of the firm’s leverage measured by the debt coupon C. The firm follows the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance. Also shown is the investment threshold of the unlevered firm, which is normalized to 1 and independent of C, and the bankruptcy threshold after investment V_B/V_f. The coupon level C_0 will be fixed in Fig. 3. Parameter values are given in Table 1, taxes are not considered ($\tau = 0$).
Figure 3: Levered firm’s investment threshold as a function of liquid funds. The levered firm’s investment threshold V_0^o, normalized by the investment threshold of the unlevered firm V_0^e, is shown as a function of the firm’s liquid funds X (for $C = C_0$), given that the firm follows the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance. Also shown are the investment threshold of the unlevered firm which is normalized to 1 and the $V_0^o/V_0^e = 0.75$ line indicating the level later used as the initial project value, as well as the bankruptcy thresholds before and after investment, V_B^o and V_B^e, respectively, again normalized by V_0^e. Parameter values are given in Table 1, taxes are not considered ($\tau = 0$).
Figure 4: Levered firm’s investment threshold for varying project value volatility. The levered firm’s investment threshold V_o^I (solid lines), normalized by the investment threshold of the unlevered firm V_e^I, is shown as a function of the firm’s leverage measured by the debt coupon C (for $X = X_0^*$), and the firm’s liquid funds X (for $C = C_0$), respectively, given that the firm follows the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance. Also shown is the investment threshold of the unlevered firm which is normalized to 1. Parameter values are given in Table 1, taxes are not considered ($\tau = 0$).
Figure 5: Agency costs of debt.
The agency costs of debt, measured by the (negative) change in firm value upon debt issuance, are shown as a function of the firm’s liquid funds X, given that the firm follows the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance. Parameter values are given in Table 1, the initial project value considered is $V_0 = 0.75V_f = 319.92$, and taxes are not considered ($\tau = 0$).
Figure 6: Optimal liquidity and capital structure.
The change in firm value upon debt issuance is shown as a function of the firm’s liquid funds $X_{1/2}$ and debt coupon rate $C_{1/2}$, given that the firm follows the first-best investment policy, i.e., the policy that is value-maximizing before debt issuance (first graph), or the second-best investment policy, i.e., the policy that is maximizing the value of the entrepreneur’s claim after debt issuance (second graph), respectively. Parameter values are given in Table 1, the initial project value considered is $V_0 = 0.75V_f^e = 319.92$, and the tax rate is $\tau = 10\%$.

42

Thomas Kokholm & Elisa Nicolato: Sato Processes in Default Modeling.

Esben Høg, Per Frederiksen & Daniel Schiemert: On the Generalized Brownian Motion and its Applications in Finance.

Stig V. Møller: Habit persistence: Explaining cross-sectional variation in returns and time-varying expected returns.

Thomas Poulsen: Private benefits in corporate control transactions.

Thomas Poulsen: Investment decisions with benefits of control.

Thomas Kokholm: Pricing of Traffic Light Options and other Correlation Derivatives.

Andrea Consiglio & Domenico De Giovanni: Pricing the Option to Surrender in Incomplete Markets.

Peter Løchte Jørgensen: Lognormal Approximation of Complex Path-dependent Pension Scheme Payoffs.

Peter Løchte Jørgensen: Traffic Light Options.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-2006-04</td>
<td>Anne-Sofie Reng Rasmussen: Improving the asset pricing ability of the Consumption-Capital Asset Pricing Model.</td>
</tr>
<tr>
<td>F-2006-03</td>
<td>Jan Bartholdy, Dennis Olson & Paula Peare: Conducting event studies on a small stock exchange.</td>
</tr>
<tr>
<td>F-2005-04</td>
<td>Søren Willemann: GSE funding advantages and mortgagor benefits: Answers from asset pricing.</td>
</tr>
<tr>
<td>F-2005-02</td>
<td>Charlotte Christiansen, Juanna Schröter Joensen and Jesper Rangvid: Do more economists hold stocks?</td>
</tr>
<tr>
<td>F-2005-01</td>
<td>Michael Christensen: Danish mutual fund performance - selectivity, market timing and persistence.</td>
</tr>
<tr>
<td>F-2004-01</td>
<td>Charlotte Christiansen: Decomposing European bond and equity volatility.</td>
</tr>
</tbody>
</table>