77 research outputs found

    Measurements of positive ions and air-earth current density at Maitri, Antarctica

    Get PDF
    Simultaneous measurements of the small-, intermediate- and large- positive ions and air earth current density made at a coastal station, Maitri at Antarctica during January to February 2005, are reported. Although, small and large positive ion concentrations do not show any systematic diurnal variations, variations in them are almost similar to each other. On the other hand, variations in intermediate positive ion concentrations are independent of variations in the small/large positive ions and exhibit a diurnal variation which is similar to that in atmospheric temperature on fair weather days with a maximum during the day and minimum during the night hours. No such diurnal variation in intermediate positive ion concentration is observed on cloudy days when variations in them are also similar to those insmall/large positive ion concentrations. Magnitude of diurnal variation in intermediate positive ion concentration on fair weather days increases with the lowering of atmospheric temperature in this season. Scavenging of ions by snowfall and trapping of Alha - rays from the ground radioactivity by a thin layer of snow on ground, is demonstrated from observations. Variations in intermediate positive ion concentration are explained on the basis of the formation of new particles by the photolytic nucleation process.Comment: 38 pages, 11 figure and 2 tabl

    Waterfalls as sources of small charged aerosol particles

    Get PDF
    In this study, we measured the mobility distributions of cluster and intermediate ions with an ion spectrometer near a waterfall. We observed that the concentration of negative 1.5–10 nm ions was one-hundred fold higher than a reference point 100 m away from the waterfall. Also, the concentration of positive intermediate ions was found to be higher than that at the reference point by a factor of ten. This difference was observed only at the smallest sizes; above 10 nm the difference was insignificant

    Identification and classification of the formation of intermediate ions measured in boreal forest

    Get PDF
    International audienceWe have measured the size distributions of air ions (0.42?7.5 nm in diameter) with the Balanced Scanning Mobility Analyzer in boreal forest, in Southern Finland since spring 2003. The size range covers the size range of cluster ions (approximately 0.42?1.6 nm) and naturally charged nanometre aerosol particles (1.6?7.5 nm) or intermediate air ions. Based on the measurements from April 2003 to March 2006 we studied the characteristics of charged aerosol particle formation by classifying each day either as a particle formation event, undefined or non-event day. The principal of the classification, as well as the statistical description of the charged aerosol particle formation events are given. We found in total 270 (26% of the analysed days) and 226 (22% of the analysed days) particle formation days for negative and positive intermediate ions, respectively. For negatively charged particles we classified 411 (40% of the analysed days) undefined and 348 (34% of the analysed days) non-event days whereas for positively charged particles 343 (33% of the analysed days) undefined and 460 (45% of the analysed days) non-event days. The results were compared with the ordinary classification based on the Differential Mobility Particle Sizer (DMPS) measurements carried out at the same place. The above-presented values differed slightly from that found from the DMPS data, with a lower particle diameter of 3 nm. In addition, we have found the rain-induced intermediate ion bursts frequently. The rain effect was detected on 163 days by means of negative ions and on 105 days by positive ones. Another interesting phenomenon among the charged aerosol particles was the appearance and existence of intermediate ions during the snowfall. We observed this phenomenon 24 times with negatively charged particles and 21 times with positively charged ones during winter months (October?April). These intermediate air ions were seen during the snowfall and may be caused by ice crystals, although the origin of these intermediate ions is unclear at the moment

    Ambient sesquiterpene concentration and its link to air ion measurements

    Get PDF
    International audienceAmbient air ion size distributions have been measured continuously at the Finnish boreal forest site in Hyytiälä since spring 2003. In general, these measurements show a maximum of air ions below 1.0 nm in diameter. But this physical characterization does not provide any information about the ion's chemical composition, which is one key question regarding the explanation of nucleation events observed. In this study we propose a link of the observed maximum of negative air ions between 0.56 and 0.75 nm to the so-called stabilised Criegee biradical, formed in the reaction of biogenic sesquiterpenes with ozone and predominantly destroyed by its reaction with ambient water vapour. Calculations of the electron and proton affinities of 120 kJ mol?1 (1.24 eV) and of 960 kJ mol?1 support this link. Other possible candidates such as sulphuric acid derived clusters are unable to explain the observations made. By using this approach, we are able to calculate the ambient concentration of sesquiterpenes at the air ion instrument inlet with a high time resolution on the daily and seasonal scale. The estimated concentration is found to reveal the same seasonal pattern as emission measurements conducted at shoot level. As expected for biogenic VOCs, the concentration is obtained highest during summer (maximum values of about 100 pptv) and smallest during winter (minimum less than 1 pptv). Because of the sesquiterpenes high reactivity and its low ambient concentrations, this approach can be a first step in understanding their emission and their impact on atmospheric chemistry in more detail. The findings presented are highly relevant for emission budgets too, since boreal forests are extended over large areas of the globe

    Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions

    Get PDF
    The condensational growth rate of aerosol particles formed in atmospheric new particle formation events is one of the most important factors influencing the lifetime of these particles and their ability to become climatically relevant. Diameter growth rates (GR) of nucleation mode particles were studied based on almost 7 yr of data measured during the years 2003–2009 at a boreal forest measurement station SMEAR II in Hyytiälä, Finland. The particle growth rates were estimated using particle size distributions measured with a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA) and an Air Ion Spectrometer (AIS). Two GR analysis methods were tested. The particle growth rates were also compared to an extensive set of ambient meteorological parameters and trace gas concentrations to investigate the processes/constituents limiting the aerosol growth. The median growth rates of particles in the nucleation mode size ranges with diameters of 1.5–3 nm, 3–7 nm and 7–20 nm were 1.9 nm h<sup>−1</sup>, 3.8 nm h<sup>−1</sup>, and 4.3 nm h<sup>−1</sup>, respectively. The median relative uncertainties in the growth rates due to the size distribution instrumentation in these size ranges were 25%, 19%, and 8%, respectively. For the smallest particles (1.5–3 nm) the AIS data yielded on average higher growth rate values than the BSMA data, and higher growth rates were obtained from positively charged size distributions as compared with negatively charged particles. For particles larger than 3 nm in diameter no such systematic differences were found. For these particles the uncertainty in the growth rate related to the analysis method, with relative uncertainty of 16%, was similar to that related to the instruments. The growth rates of 7–20 nm particles showed positive correlation with monoterpene concentrations and their oxidation rate by ozone. The oxidation rate by OH did not show a connection with GR. Our results indicate that the growth of nucleation mode particles in Hyytiälä is mainly limited by the concentrations of organic precursors

    Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest

    Get PDF
    International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba

    Field measurements suggest the mechanism of laser-assisted water condensation

    Get PDF
    Because of the potential impact on agriculture and other key human activities, efforts have been dedicated to the local control of precipitation. The most common approach consists of dispersing small particles of dry ice, silver iodide, or other salts in the atmosphere. Here we show, using field experiments conducted under various atmospheric conditions, that laser filaments can induce water condensation and fast droplet growth up to several μm in diameter in the atmosphere as soon as the relative humidity exceeds 70%. We propose that this effect relies mainly on photochemical formation of p.p.m.-range concentrations of hygroscopic HNO3, allowing efficient binary HNO3–H2O condensation in the laser filaments. Thermodynamic, as well as kinetic, numerical modelling based on this scenario semiquantitatively reproduces the experimental results, suggesting that particle stabilization by HNO3 has a substantial role in the laser-induced condensation
    • …
    corecore