1,198 research outputs found
Magnetic correlations on the full chains of Ortho-II YBaCuO
We propose that the NMR line shape on the chain Cu in the stoichiometric
high- superconductor Ortho-II YBaCuO is determined by the
magnetization induced on Cu near O vacancies, due to strong magnetic
correlations in the chains. An unrestricted Hartree-Fock calculation of a
coupled chain-plane Hubbard model with nearest-neighbor d-wave pairing
interaction shows that the broadening of NMR lines is consistent with
disorder-induced magnetization at low temperatures. In addition, we give a
possible explanation of the anomalous bimodal line shape observed at high
temperatures in terms of nonuniform Cu valence in the chains. The proximity
between chains and CuO plane induces anisotropic magnetization on the planar
Cu, and broadens the plane NMR lines in accordance with that of the chain
lines, in agreement with experiment. We discuss implications of the model for
other experiments on underdoped YBCO.Comment: 8 pages, 8 figures, submitted to PR
Spin excitations in layered antiferromagnetic metals and superconductors
The proximity of antiferromagnetic order in high-temperature superconducting
materials is considered a possible clue to the electronic excitations which
form superconducting pairs. Here we study the transverse and longitudinal spin
excitation spectrum in a one-band model in the pure spin density wave (SDW)
state and in the coexistence state of SDW and the superconductivity. We start
from a Stoner insulator and study the evolution of the spectrum with doping,
including distinct situations with only hole pockets, with only electron
pockets and with pockets of both types. In addition to the usual spin-wave
modes, in the partially gapped cases we find significant weight of low-energy
particle-hole excitations. We discuss the implications of our findings for
neutron scattering experiments and for theories of Cooper-pairing in the
metallic SDW state.Comment: (14 pages, 6 figures
Two impurities in a d-wave superconductor:local density of states
We study the problem of two local potential scatterers in a d-wave
superconductor, and show how quasiparticle bound state wave functions
interfere. Each single-impurity electron and hole resonance energy is in
general split in the presence of a second impurity into two, corresponding to
one even parity and one odd parity state. We calculate the local density of
states (LDOS), and argue that scanning tunneling microscopy (STM) measurements
should be capable of extracting information about the Green's function in the
pure system by a systematic study of 2-impurity configurations. In some
configurations highly localized, long-lived states are predicted. We discuss
the effects of realistic band structures, and how 2-impurity STM measurements
could help distinguish between current explanations of LDOS impurity spectra in
the BSCCO-2212 system.Comment: 16 pages,21 figure,New Version to be Published on P.R.
Quantum interference in nested d-wave superconductors: a real-space perspective
We study the local density of states around potential scatterers in d-wave
superconductors, and show that quantum interference between impurity states is
not negligible for experimentally relevant impurity concentrations. The two
impurity model is used as a paradigm to understand these effects analytically
and in interpreting numerical solutions of the Bogoliubov-de Gennes equations
on fully disordered systems. We focus primarily on the globally particle-hole
symmetric model which has been the subject of considerable controversy, and
give evidence that a zero-energy delta function exists in the DOS. The
anomalous spectral weight at zero energy is seen to arise from resonant
impurity states belonging to a particular sublattice, exactly as in the
2-impurity version of this model. We discuss the implications of these findings
for realistic models of the cuprates.Comment: 12 pages, 10 figs, submitted to Phys. Rev.
- …