in characteristic p > 0, there is different behaviour; for example, $\mathscr{U}_{2,q}$ has 28 <u>undulations</u> (points where the tangent has 4-point contact). When g=4, the curve $\mathscr{C}^6 = \mathscr{F}^3 \cap \mathscr{F}^2$, the intersection of a cubic and a quadric surface, has 60 <u>stalls</u> where the osculating plane meets the curve at four coincident points.

More generally, still with characteristic zero, if $\mathscr C$ has genus $g\geq 1$ and $P\in\mathscr C$, there exist integers n_1,n_2,\ldots,n_g such that no function has pole divisor precisely n_iP . Also $\{n_1,n_2,\ldots,n_g\}=\{1,2,\ldots,g\}$ for all but a finite number of points. We elaborate this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let $\mathscr{C}A^n(K)$ be an irreducible non-singular algebraic curve defined over K, let $I(\mathscr{C})$ \subset $K[X_1,\ldots,X_n]$ be the ideal of polynomials wich are zero at all points of \mathscr{C} , let $\Gamma(\mathscr{C})=K=[X_1,\ldots,X_n]/I(\mathscr{C})$; and $K(\mathscr{C})$ be the quotient field of $\Gamma(\mathscr{C})$; then $K(\mathscr{C})$ is called the <u>function field</u> of \mathscr{C} . Also, for P in \mathscr{C} let $O_P=\{f/g|f,g\in\Gamma,g(P)\neq 0\}$, the <u>local ring</u> of \mathscr{C} at P. Then, by natural inclusions, $K\subset\Gamma(\mathscr{C})\subset O_P(\mathscr{C})\subset K(\mathscr{C})$. Also $O_P\setminus\{units\}=M_P=< t >$, the maximal ideal, and for any z in O_P there exist a unique unit u and a unique non-negative integer m such that $z=ut^m$; write $m=ord_P(z)$. Hence, if $GeK[X_1,\ldots,X_n]$ and g is the image of G in $\Gamma(\mathscr{C})$ with $G(P)\neq 0$, define $ord_P(G)=ord_P(g)$. In particular, if \mathscr{C} is a plane curve and V(L) the tangent at P, then $ord_P(L)$ gives the multiplicity of contact of the tangent with \mathscr{C} .

For the extension of these definitions to the projective case, see Fulton [3], p.182. This is the situation we now consider.

A <u>divisor</u> D on $\mathscr C$ is $D = \sum_{P \in \mathscr C} n_P P$, $n_P \in \mathbf Z$, with $n_P = 0$ for all but a finite number of points P; the <u>degree</u> of D is deg $D = \sum n_P$. Then D is <u>effective</u> if $n_P \geq 0$ for all P. For z in $K(\mathscr C)$, define

$$div(z) = ord_{P}(z)P$$

$$= (z)_{O} - (z)_{\infty},$$

where

$$(z)_0 = \sum_{\text{ord}(z)>0} \text{ord}_P(z)P$$
, the divisor of zeros,

and

$$(z)_{\infty} = \sum_{\text{ord}(z) < 0} - \text{ord}_{p}(z)P, \text{ the divisor of poles};$$

that is, div(z) is the difference of two effective divisors and $deg \ div(z) = 0$.

Given D = $\Sigma n_p P$, define

$$L(D) = \{ f \in K(\mathscr{C}) \mid ord_{p}(f) \geq -n_{p}, \forall P \} ;$$

that is, poles of f are no worse than n_p . In other words, feL(D) if f=0 or if div(f) + D is effective.

The set $L(\mathbb{D})$ is a vector space and its dimension is denoted $\ell(\mathbb{D})$.

There is an important equivalence relation on the divisors given by $D \sim D'$ if there exists g in $K(\mathscr{C})$ such that $D - D' = \operatorname{div}(g)$.