ALGEBRAIC CURVES, ARCS, AND CAPS OVER FINITE FIELDS

J.W.P.HIRSCHFELD

Mathematics Division
University of Sussex
Falmer
Brighton BN1 9QH
INGHILTERRA

INTRODUCTION

These notes give an account of a series of lectures at the University of Lecce as well as two at the University of Bari, all during April 1986.
§§1-15 are based on the thesis [18], of J.-F.Voloch, apart from some background remarks and classical interpolations. They deal with the number of points on an algebraic curve over a finite field. The main results of the thesis are also contained in [14], §16 records some classical results on elliptic curves and §17, following Voloch [19], proves the existence of complete k-arcs for many values of k by taking half the points on an elliptic curve. §§18-19 discusses the values of $n(2, q)$, the size of the smallest $k-a r c$ in $P G(2, q)$, and $m^{\prime}(2, q)$, the size of the second largest complete $k-a r c$ in $P(2, q)$, the main result of $\$ 19$ follows a proof of Segre using an improved bound for the number of points on a curve from $\S \S 11$ and 14 . Finally, $\S 20$ summarizes the best, known estjmates for $m_{2}(d, q)$, the ingest size of $k-c a p$ in $P G(d, q)$.

2. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

Let \mathscr{C} be an algebraic curve defined over $G F(q)$ of genus g, and let N_{1} be the number of points, rational over $G F(q)$, on a non-singular model of \mathscr{C}. Define $\mathrm{N}_{\mathrm{q}}(\mathrm{g})=\max \mathrm{N}_{1}$, where \mathscr{C} varies over all curves of genus g. We recall the following bounds.
(i) Hasse-Weil:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{q}}(\mathrm{q}) \leq \mathrm{q}+1+2 \mathrm{gq}^{1 / 2} \\
& \mathrm{~N}_{\mathrm{q}}(\mathrm{~g}) \leq \mathrm{q}+1+\mathrm{g}\left[2 \mathrm{q}^{1 / 2}\right]
\end{aligned}
$$

(ii) Serre:
(iii) Ihara:

$$
N_{q}(g) \leq q+1-\frac{1}{2} g+\left\{2(q+1 / 8) g^{2}+\left(q^{2}-q\right) g\right\}^{1 / 2}
$$

(iv) Manin:

$$
\begin{array}{lll}
N_{2}(q) \leq 2 g-\sigma(g) & \text { as } & g \rightarrow \infty \\
N_{3}(g) \leq 3 g+\sigma(g) & \text { as } & g \rightarrow \infty
\end{array}
$$

(v) Drinfeld-Vladut: $\quad \mathrm{N}_{\mathrm{q}}(\mathrm{g}) \leq \mathrm{g}\left(\mathrm{q}^{1 / 2}-1\right)+\sigma(\mathrm{g})$ as $\mathrm{g} \rightarrow \infty$.

For a summary of results on $\mathrm{N}_{\mathrm{q}}(\mathrm{g})$ and references, see [9] Appendix IV.

The estimates (i) and (ii) are good for $g \leq \frac{1}{2}\left(q-q^{1 / 2}\right)$, but not for $g>\frac{1}{2}\left(q-q^{1 / 2}\right)$.

One of the aims of these notes is to describe improvements to (i), (ii), (iii). First, it is elementary that (ii) is sometimes better than (i) and never worse.

Let $m=\left[2 q^{1 / 2}\right]$. Then $2 q^{1 / 2}=m+\varepsilon$, where $0 \leq \varepsilon<1$. So

$$
\left[2 \mathrm{gq}^{1 / 2}\right]=[\mathrm{g}(\mathrm{~m}+\varepsilon)]=[\mathrm{gm}+\mathrm{g} \varepsilon]=\mathrm{gm}+[\mathrm{g} \varepsilon]
$$

3. THE DEDUCTION OF SERRE'S AND IHARA'S RESULTS FROM THE RIEMANN HYPOTHESIS.
(a) Serre's result

The Riemann hypothesis states that if N_{i} is the number of points of \mathscr{C} rational over $G F\left(q^{i}\right)$, then

$$
\begin{aligned}
\mathscr{S}(\mathscr{C}) & =\exp \left(\sum N_{i} x^{i} / i\right) \\
& =\mathrm{f}(\mathrm{x}) /\{(1-\mathrm{x})(1-\mathrm{qx})\},
\end{aligned}
$$

where $f(x)=1+c_{1} x+\ldots+q^{g} x^{2 g} \in \mathbb{Z}[x]$ has inverse roots $\alpha_{1}, \ldots, \alpha_{2 g}$ satisfying
(i) $\alpha_{i} \alpha_{2 g-i}=c_{i}$,
(ii) $\left|\alpha_{i}\right|=q^{1 / 2}$.

So $\alpha_{i} \bar{\alpha}_{i}=q$, whence $\alpha_{2 g-i}=q / \alpha_{i}=\bar{\alpha}_{i}$ Thus, from the zeta function

$$
\begin{equation*}
N_{1}=q+1-\sum_{1}^{g}\left(\alpha_{i}+\bar{\alpha}_{i}\right) . \tag{3.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{i=1}^{2 \mathrm{~g}} \alpha_{i}^{\mathrm{k}}=\mathrm{q}^{\mathrm{k}}+1-\mathrm{N}_{\mathrm{k}}, \tag{3.2}
\end{equation*}
$$

the elementary symmetric functions of the α_{i} are integers and the α_{i} are algebraic integers.

As above, let $m=\left[2 q^{1 / 2}\right]$ and let $x_{i}=m+1-\alpha_{i}-\bar{\alpha}_{i}, \quad i=1, \ldots, g$.
(1) $x_{i}>0$

Let $\alpha_{i}=c+d \sqrt{-1}, \quad \bar{\alpha}_{i}=c-d \sqrt{-1}$. Then $c^{2}+d^{2}=q$, whence $c \leq \sqrt{q}$. So $\alpha_{i}+\bar{\alpha}_{i}=2 c \leq 2 \sqrt{q}$ and $[2 \sqrt{ } \dot{q}]+1>\alpha_{i}+\bar{\alpha}_{i}$; thus $x_{i}>0$.
(2) The x_{i} are conjugate algebraic integers

To show that the elementary symmetric functions of the x_{i} are integers, it suffices to show that $\sum_{1}^{g} x_{i}^{r}$ is an integer for $r=1, \ldots, g$
or that $\Sigma\left(\alpha_{i}+\bar{\alpha}_{i}\right)^{r}$ is an integer. However,

$$
\begin{gathered}
\sum_{1}^{g}\left(\alpha_{i}+\bar{\alpha}_{i}\right){ }^{r}=\sum_{1}^{g} \alpha_{i}^{r}+\binom{r}{1} \sum_{1}^{g} \alpha_{i}^{r-1} \bar{\alpha}_{i}+\ldots+\binom{r}{1} \sum_{1}^{g} \alpha_{i} \bar{\alpha}_{i}^{r-1}+\sum_{1}^{g} \bar{\alpha}_{i}^{r} \\
\quad=\sum_{1}^{2} g_{\alpha}^{r}{ }_{i}^{r}+\binom{r}{1} q \sum_{1}^{2 g}{ }_{\alpha}^{r}-2 \\
i
\end{gathered}
$$

which is an integer.
The classical inequality on arithmetic and geometric means gives

$$
\frac{1}{g} \sum x_{i} \geq\left(\Pi x_{i}\right)^{1 / g} \geq 1
$$

by (1) and (2). So $\Sigma x_{i} \geq g$, whence $\sum\left(\alpha_{i}+\bar{\alpha}_{i}\right) \leq$ gm. Applying the same argument with y_{i} for x_{i} with $y_{i}=m+1+\alpha_{i}+\bar{\alpha}_{i}$ gives $\Sigma\left(\alpha_{i}+\alpha_{i}\right) \geq-\mathrm{gm}$. Hence

$$
\begin{equation*}
\left|N_{1}-(q+1)\right| \leq g m \tag{3.3}
\end{equation*}
$$

(b) Ihara's result

We use (3.1) and

$$
\begin{equation*}
N_{2}=q^{2}+1-\Sigma\left(\alpha_{i}^{2}+\bar{\alpha}_{i}^{2}\right) \tag{3.4}
\end{equation*}
$$

Since $\alpha_{i}^{2}+\bar{\alpha}_{i}^{2}=\left(\alpha_{i}+\bar{\alpha}_{i}\right)^{2}-2 q$, so

$$
\mathrm{q}+1-\Sigma\left(\alpha_{\mathrm{i}}+\bar{\alpha}_{\mathrm{i}}\right)=\mathrm{N}_{1} \leq \mathrm{N}_{2}=\mathrm{q}^{2}+1+2 \mathrm{qg}-\Sigma\left(\alpha_{\mathrm{i}}+\bar{\alpha}_{\mathrm{i}}\right)^{2} .
$$

However, $g \Sigma\left(\alpha_{i}+\bar{\alpha}_{i}\right)^{2} \geq\left\{\Sigma\left(\alpha_{i}+\alpha_{i}\right)\right\}^{2}$. Thus

$$
\begin{aligned}
\mathrm{N}_{1} & \leq \mathrm{q}^{2}+1+2 \mathrm{qg}-\mathrm{g}^{-1}\left\{\sum\left(\alpha_{i}+\bar{\alpha}_{\mathrm{i}}\right)\right\}^{2} \\
& =\mathrm{q}^{2}+1+2 \mathrm{qg}-\mathrm{g}^{-1}\left(\mathrm{~N}_{1}-\mathrm{q}-1\right)^{2}
\end{aligned}
$$

and

$$
N_{1}^{2}-(2 q+2-g) N_{1}+(q+1)^{2}-\left(q^{2}+1\right) g-2 q g^{2} \leq 0,
$$

from which the result follows.
For $g>\frac{1}{2}(q-\sqrt{q})$, Ihara's result is better than Serre's.

4. THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let \mathscr{C} be as in $\S 2$, but consider it as curve over \bar{K}, the algebraic closure of $K=G F(q)$. Also suppose that \mathscr{C} is embedded in the plane $\operatorname{PG}(2, \bar{K})$ and let φ be the Frobenius map given by

$$
P\left(x_{o}, x_{1}, x_{2}\right) \varphi=P\left(x_{o}^{q}, x_{1}^{q}, x_{2}^{q}\right)
$$

where $P\left(x_{0}, x_{1}, x_{2}\right)$ is the point of the plane with coordinate vector $\left(x_{0}, x_{1}, x_{2}\right)$. Then

$$
\begin{aligned}
\mathscr{C} & =V(F) \\
& =\left\{P\left(x_{0}, x_{1}, x_{2}\right) \mid F\left(x_{0}, x_{1}, x_{2}\right)=0\right\}
\end{aligned}
$$

for some form F in $K\left[X_{0}, X_{1}, X_{2}\right]$. Also $\mathscr{C} \varphi=\mathscr{C}$ and the points of \mathscr{C} rational over $G F(q)$ are exactly the fixed points of φ on \mathscr{C}.

For any non-singular point $P=P\left(x_{0}, x_{1}, x_{2}\right)$ the tangent T_{p} at P is

$$
T_{p}=V\left(\frac{\partial F}{\partial x_{0}} X_{o}+\frac{c}{\partial x_{1}} x_{1}+\frac{\partial F}{\partial x_{2}} X_{2}\right)
$$

In affine coordinates,

$$
T_{p}=V\left(\frac{\partial f}{\partial a}(x-a)+\frac{\partial f}{\partial b}(x-b)\right)
$$

where $f(x, y)=F(x, y, 1)$.

Instead of looking at fixed points of φ, let us look at the set of points such that $P \varphi \in T_{p}$. As $P \in T_{p}$, this set contains the $G F(q)$-rational points of \mathscr{C}. Let

$$
h=\left(x^{q}-x\right) f_{x}+\left(y^{q}-y\right) f_{y}
$$

Then

$$
\begin{aligned}
h_{x} & =\left(q x^{q-1}-1\right) f_{x}+\left(x^{q}-x\right) f_{x x}+\left(y^{q}-y\right) f_{y x} \\
& =-f_{x}+\left(x^{q}-x\right) f_{x x}+\left(y^{q}-y\right) f_{y x}
\end{aligned}
$$

and

$$
h_{y}=-f_{y}+\left(x^{q}-x\right) f_{x y}+\left(y^{q}-y\right) f_{y y}
$$

So $V(h)$ and $V(f)$ have a common tangent at any $G F(q)-r a t i o n a l$ point of \mathscr{C} that is non-singular. So, if N is the number of $G F(q)-r a t i o n a l$ points of \mathscr{G} and the degree of f is d, then Bézout's theorem implies, when f is not a component of h, that

$$
\begin{aligned}
(d+q-1) d= & \operatorname{deg} h \operatorname{deg} f \\
= & \text { sum of the intersection numbers at } \\
& \text { the points of } V(f) \cap V(h) \\
\geq & 2 N .
\end{aligned}
$$

Hence $\mathrm{N} \leq \frac{1}{2} \mathrm{~d}(\mathrm{~d}+\mathrm{q}-1)$.
Now, suppose that $V(f)$ is a component of $V(h)$, or equivalently that $h=0$ as a function an $V(f)$. Therefore

$$
\begin{aligned}
& \left(x^{q}-x\right) f_{x} / f_{y}+\left(y^{q}-y\right)=0 \\
& \left(x^{q}-x\right) \frac{d y}{d x}-\left(y^{q}-y\right)=0
\end{aligned}
$$

Differentiating gi:es

$$
\left(x^{q}-x\right) \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-\frac{d}{d x}\left(y^{q}-y\right)=0
$$

Remembering that $\frac{d}{d x}=\frac{\partial}{\partial x}+\frac{d y}{d x} \frac{\partial}{\partial y}$, we obtain that

$$
\begin{gathered}
\left(x^{q}-x\right) \frac{d^{2} y}{d x^{2}}=0 \\
\frac{d^{2} y}{d x^{2}}=0
\end{gathered}
$$

Since $\frac{d y}{d x}=-f_{x} / f_{y}$, it follows that

$$
\frac{d^{2} y}{d x^{2}}=-f_{y}^{-2}\left\{f_{x x} f_{y} 2-2 f_{x y} f_{x} f_{y}+f_{y y} f_{x} 2\right\}
$$

THEOREM 4.1: If $\frac{d^{2} y}{d x^{2}} \neq 0$, that is, \mathscr{C} is not all inflexions and o is odd, then $N \leq \frac{1}{2} d(d+q-1)$.

In fact $\frac{d^{2} y}{d x^{2}}=0$ can y occur when \mathscr{C} is a line or the characte ristic $? \leq d$.For example, when $f=x^{p^{r}+1}+y^{p^{r}+1}+1$, then \mathscr{C} is all inflexions. A particular case of this phenomenon is the Hermitian curve $y_{2, q}=V\left(x_{0}^{\sqrt{q}+1}+\cdots x_{2}^{\sqrt{q}+1}\right)$ when q is a square.

Since every curve of genus 3 can be embedded in the plane as a non-singular quartic, we can see how theorem 4.1 compares with Serre's bound for $\mathrm{N}_{\mathrm{q}}(3)$ and its actual value.

q	3	5	7	9	11	13	17	19
$2(q+3)$	12	16	20	24	28	32	40	44
$q+1+3[2 \sqrt{q}]$	13	18	23	28	30	35	42	44
$\mathrm{~N}_{\mathrm{q}}(3)$	10	16	20	28	28	32	40	44

Thus, for q odd with $q \leq 19$ and $q \neq 3$ or 9 , the theorem gives the best possible result. A curve achieving $\mathrm{N}_{9}(3)$ is $\mathscr{U}_{2,9}$.

5. WEIERSTRASS POINTS IN CHARACTERISTIC ZERO.

First consider the canonical curve $\mathscr{B}^{2 g-2}$ of genus $g \geq 3$ in PG(g-1, $\mathbb{C})$. The Weierstrass points, W-points for short, are the points at which the osculating hyperplane has g coincident intersections. In this case, with w the number of W-points

$$
\mathrm{w}=\mathrm{g}\left(\mathrm{~g}^{2}-1\right)
$$

In any case,

$$
2 g+2 \leq \dot{w} \leq g\left(g^{2}-1\right)
$$

with the lower bounded achieved only for hyperelliptic curves. A curve of genus $g>1$ is hyperelliptic if it has a linear series $\gamma \frac{1}{2}$ (a 2-sheeted covering) on it; for example, a plane quartic with a double point. It has equation

$$
y^{2}=f(x)
$$

with genus $g=\left[\frac{1}{2}(d-1)\right]$ where $d=\operatorname{deg} f$.
Consider the case $g=3$ of the canonical curve \mathscr{C}^{4}, a non-singular plane quartic. The W-points are the 24 inflexions. We note that
in characteristic $p>0$, there is different behaviour; for example, $\mathscr{U}_{2, q}$ has 28 undulations (points where the tangent has 4 -point contact). When $g=4$, the curve $\mathscr{C}^{6}=\mathscr{F}^{3} \cap \mathscr{F}^{2}$, the intersection of a cubic and a quadric surface, has 60 stalls where the osculating plane meets the curve at four coincident points.

More generally, still with characteristic zero, if \mathscr{C} has genus $\mathrm{g} \geq 1$ and $\mathrm{P} \in \mathbb{C}$, there exist integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{g}}$ such that no function has pole divisor precisely $n_{i} P$. Also $\left\{n_{1}, n_{2}, \ldots, n_{g}\right\}=$ $=\{1,2, \ldots, g\}$ for all but a finite number of points. We elaborate this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let $\& \in A^{n}(K)$ be an irreducible non-singular algebraic curve defined over K, let $I(\varphi) \subset K\left[X_{1}, \ldots, X_{n}\right]$ be the ideal of polynomials wich are zero at all points of \mathscr{C}, let $\Gamma(\mathscr{C})=K=\left[x_{1}, \ldots, X_{n}\right] / I(\mathscr{C})$; and $K(\mathscr{C})$ be the quotient field of $\Gamma(\mathscr{C})$; then $K(\mathscr{C})$ is called the function field of $\mathscr{C} . A l$ so,for P in \mathscr{C}, let $O_{P}=\{f / g \mid f, g \in \Gamma, g(P) \neq 0\}$, the local ring of \mathscr{C} at P. Then, by natural inclusions, $K \subset \Gamma(\mathscr{C}) \subset O_{P}(\mathscr{C}) \subset K(\mathscr{C})$. Also $O_{P} \backslash\{$ units $\}$ $=M_{P}=\langle t\rangle$, the maximal ideal, and for any z in 0_{p} there exist a unique unit u and a unique non-negative integer m such that $z=u t^{m} ;$ write $m=\operatorname{ord}_{p}(z)$. Hence, if $G \in K\left[X_{1}, \ldots, X_{n}\right]$ and g is the image of G in $\Gamma(\mathscr{G})$ with $G(P) \neq 0$, define $\operatorname{ord}_{P}(G)=\operatorname{ord}_{P}(g)$. In particular, if \mathscr{C} is a plane curve and $V(L)$ the tangent at P, then $\operatorname{ord}_{\mathrm{p}}(\mathrm{L})$ gives the multiplicity of contact of the tangent with \mathscr{C}.

For the extension of these definitions to the projective case, see Fulton [3], p.182. This is the situation we now consider.

A divisor D on \mathscr{C} is $D=\sum_{P \in \mathscr{C}} n_{P} P, n_{p} \in \mathbf{Z}$, with $n_{P}=0$ for all but a finite number of points P; the degree of D is deg $D=\Sigma n_{P}$. Then D is effective if $n_{P} \geq 0$ for all P. For z in $K(\mathscr{C})$, define

$$
\begin{aligned}
\operatorname{div}(z) & =o r d_{P}(z) P \\
& =(z)_{0}-(z)_{\infty},
\end{aligned}
$$

where

$$
(z)_{0}=\underset{\operatorname{ord}(z)>0}{\Sigma} \operatorname{ord}_{\mathrm{P}}(z) P \text {, the divisor of zeros, }
$$

and

$$
(z)_{\infty}=\underset{\operatorname{ord}(z)<0}{\Sigma}-\operatorname{ord}_{p}(z) P, \text { the divisor of poles; }
$$

that is, div(z) is the difference of two effective divisors and deg $\operatorname{div}(z)=0$.

Given $D=\Sigma n_{P} P$, define

$$
L(D)=\left\{f \in K(\mathscr{C}) \mid \operatorname{ord}_{p}(f) \geq-n_{p}, \forall P\right\} ;
$$

that is, poles of f are no worse than n_{p}. In other words, $f \in L(D)$ if $f=0$ or if $\operatorname{div}(f)+D$ is effective.

The set $L(D)$ is a vector space and its dimension is denoted $\ell(D)$.

There is an important equivalence relation on the divisors given by $D \sim D^{\prime}$ if there exists g in $K(\mathscr{C})$ such that $D-D^{\prime}=\operatorname{div}(g)$.

7. THE CANONICAL SERIES

Let \mathscr{C} be an irreducible curve in $P G(2, \bar{K})$ where \bar{K} is the algebraic closure of K and let X be a non-singular model of \mathscr{C} with $\Psi: X \rightarrow \mathscr{C}$ birational. Points of X are places or branches of \mathscr{C}. A place Q is centred at P if $Q \Psi=P$. Let $r_{Q}=m_{P}(\mathscr{C})$, the multiplicity of \mathscr{C} at P , where \mathscr{C} has only ordinary singular points. If $\mathscr{C}^{\prime}=V(G)$ is any other plane curve such that $\operatorname{div}(G)-E$ is effective, where $E=\sum_{Q \in X}\left(r_{Q}-1\right) Q$, then \mathscr{C}^{\prime} is an adjoint of \mathscr{C}; essentially, \mathscr{C}^{\prime} passes m-1 times through any point of \mathscr{C} of multiplicity m. If deg $\mathscr{C}=\mathrm{d}$ and $\operatorname{deg} \mathscr{C}^{\prime}=d-3$, then \mathscr{C}^{\prime} is a special adjoint of \mathscr{C}. In this case, div(G) - E is a canonical divisor. The canonical series, consisting of all canonical divisors, is therefore cut out by all the special adjoints of \mathscr{C}. The series is a $\underset{2}{\mathrm{r}-1} \mathrm{~g}$ - of (projective) dimension g-1 and order $2 \mathrm{~g}-2$. For example,

$$
\mathscr{C}^{6}=V\left(z^{2} x y(x-y)(x+y)+x^{6}+y^{6}\right)
$$

is a sextic with an ordinary quadruple point at $P(0,0,1)$ and no other singularity. 'So

$$
g=\frac{1}{2}(6-1)(6-2)-\frac{1}{2} 4(4-1)=4 .
$$

The special adjoints are cubics with a triple point at $P(0,0,1)$, that is triples of lines through the point. A special adjoint has equation $V\left(\left(x-\lambda_{1} y\right)\left(x-\lambda_{2} y\right)\left(x-\lambda_{3} y\right)\right.$) and has freedom 3 . It meets 4^{6} in $6 \cdot 3-4 \cdot 3=6$ points other than $P(0,0,1)$. Hence the special adjoints cut out a γ_{5}^{3}, as expected.

The Riemann-Roch theorem says that if W is canonical divisul
on X and D is any divisor, then

$$
\ell(D)=\operatorname{deg} D+1-g+\ell(W-D)
$$

8. THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K}, and let $f: X \rightarrow \mathscr{C} c P G(n, \bar{K})$ be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that \mathscr{C} is not contained in a hyperplane. The degree d of \mathscr{C} is the number of points of intersection of \mathscr{C} with a generic hyperplane. For any hyperplane H, if n_{p} is the intersection multiplíi city of H and \mathscr{C} at P , then

$$
H \cdot \mathscr{C}=\sum_{P \in \mathscr{C}} n_{P} P
$$

is a divisor of degree $d=\Sigma n_{p}$. Also

$$
\mathscr{D}=\{\mathrm{H} . \mathscr{C} \mid \mathrm{H} \text { a hyperplane }\}
$$

is a linear system. In this case, $D \sim D^{\prime}$ for any D, D^{\prime} in \mathbb{Q}. Hence \mathscr{Z} js contained in the complete linear system $|D|=\left\{D^{\prime} \mid D^{\prime} \sim D\right\}$, where D is some element of \mathscr{D}.

A complete linear system defines an embedding $f: X \rightarrow{ }_{C}$ given by

$$
f(Q)=P\left(f_{o}(Q), \ldots, f_{n}(Q)\right)
$$

where $\left\{f_{o}, \ldots, f_{n}\right\}$ is a basis of

$$
L(D)=\{\operatorname{ge\overline {K}}(X) \mid \operatorname{div}(g)+D \geq 0\} .
$$

Given a linear system $\mathscr{\mathscr { V }}$, the complete system containing \mathscr{Q} has the same degree as \mathscr{D} and possibly larger dimension. Hence, although not necessary, it is simpler to consider complete linear systems, and this we do.

Let $\mathscr{C}_{\mathbb{L}}$ of degree d have associated complete linear system $\mathscr{L}_{\mathbb{D}}$ and let P be a fixed point of \mathscr{C}. Let \mathscr{D}_{i} be the set of hyperplanes passing through P with multiplicity at least i. Then

$$
\mathscr{D}=\mathscr{D}_{\mathrm{o}} \supset \mathscr{R}_{1} \supset \ldots \mathscr{D}_{\mathrm{d}} \supset \mathscr{D}_{\mathrm{d}+1}=\emptyset .
$$

Each \mathscr{R}_{i} is a projective space. If $\mathscr{R}_{i} \neq \mathscr{D}_{i+1}$, then \mathscr{D}_{i+1} has codimension one in \mathscr{D}_{i}. Such an i is a $(\mathscr{D}, \mathrm{P})$-order. So the $(\mathscr{D}, \mathrm{P})$-orders are j_{o}, \ldots, j_{n}, where

$$
0=j_{0}<j_{1}<j_{2}<\cdots<j_{n} \leq d .
$$

Note that $j_{1}=1$ if and only if P is non singular.
For example, let \mathscr{C} be a plane cubic.
Then

$$
\left(j_{0}, j_{1}, j_{2}\right)= \begin{cases}(0,1,2) & \text { if } P \text { is neither singular nor an inflexion, } \\ (0,1,3) & \text { if } P \text { is an inflexion, } \\ (0,2, j) & \text { if } P \text { is singular. }\end{cases}
$$

Note that, as the points of \mathscr{C} are viewed as branches, each branch has a unique tangent.

The Hasse derivative, satisfies the following properties:
(i) $D_{t}^{(i)}\left(\Sigma a_{j}{ }^{j}{ }^{j}\right)=\Sigma a_{j}\left(\begin{array}{l}j \\ i\end{array} t^{j-i}\right.$;
(ii) $D_{t}^{(i)}(f g)=\sum_{j=0}^{i} D_{t}^{(j)} f \cdot D_{t}^{(i-j)} g$;
(iii) $D_{t}^{(i)} D_{t}^{(j)}=\binom{i+j}{i} D_{t}^{(i+j)}$.

The unique hyperplane with intersection multiplicity j_{n} at P is the osculating hyperplane H_{P} and has equation

For example, if \mathscr{C} is the twisted cubic in $\operatorname{PG}(3, K)$,

$$
\begin{aligned}
& \left(f_{0}, f_{1}, f_{2}, f_{3}\right)=\left(1, t, t^{2}, t^{3}\right), \\
& \left(j_{0}, j_{1}, j_{2}, j_{3}\right)=(0,1,2,3)
\end{aligned}
$$

The osculating hyperplane at $P\left(1, t, t^{2}, t^{3}\right)$ is

$$
\operatorname{det}\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 1 & 3 t
\end{array}\right]=0 ;
$$

that is,

$$
t^{3} x_{0}-3 t^{2} x_{1}+3 t x_{2}-x_{3}=0
$$

The point P on \mathscr{C} is a Weierstrass point, W-point for-short, if $\left(j_{0}, j_{1}, \ldots, j_{n}\right) \neq(0,1, \ldots, n)$.

Since \mathscr{D} is complete, the Riemann-Roch theorem gives that, if $\mathrm{d}>2 \mathrm{~g}-2$, then
(i) $\mathrm{n}=\mathrm{d}-\mathrm{g}$;
(ii) $\operatorname{dim} \mathscr{D}_{i}=d-g-i$ for $i \leq d-2 g+1$;
(iii) $j_{i}=i \quad$ for $i \leq d-2 g$.

Let $L_{i}=\cap$ hyperplanes meeting \mathscr{C} at P with $n_{P} \geq j_{i}+1$. Then L_{i} is dual to \mathscr{D}_{i} and

$$
L_{0} \subset L_{1} \subset L_{2} \subset \ldots c L_{n-1}
$$

Also $L_{o}=\{P\}$, the set L_{1} is the tangent line at P, and L_{n-1} is the osculating hyperplane at P.

The point P is a \mathscr{D}-osculation point if $j_{n}>n$, that is, there exists a hyperplane H such that $n_{P}>n$.

The integers j_{i} are characterized by the following result.
THEOREM 8.1 : (i) If j_{0}, \ldots, j_{i-1} are known, then j_{i} is the smallest integer r such that $D^{(r)} f(Q)$ is linearly independent of $\left\{D^{\left(j_{o}\right)} f(Q), \ldots, D^{\left(j_{i-1}\right)} f(Q)\right\}$; the latter set spans L_{i-1}.
(ii)If $0 \leq r_{o}<\cdots<r_{s}$ are integers such that

9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

Here the derivations are taken with respect to a separating variable t (dt is the image of t under the map $d: \bar{K}(\mathscr{C}) \rightarrow \Omega_{\bar{K}}$; see Fulton [3] p. 203).

The ε_{i} are required to satisfy the conditions:
(i) $0=\varepsilon_{0}<\varepsilon_{1}<\ldots<\varepsilon_{n}$;
(ii) $\mathrm{W} \neq 0$;
(i:j) given $\varepsilon_{o}, \ldots, \varepsilon_{i-1}$, then ε_{i} is chosen as small as possible such that $\left.D^{\left(\varepsilon_{0}\right)}{ }_{f}, \ldots,\right)^{r_{1}}{ }^{\prime}$ f are linearly independent.

Then
(iv) the ε_{i} are the ($\left.\mathscr{D}, \mathrm{P}\right)$-orders at a general point P;
(v) $\varepsilon_{i} \leq r_{i}$ for any $r_{0}<\ldots<r_{n}$ with $\operatorname{det}\left(D^{\left(r_{i}\right)} f_{j}\right) \neq 0$;
(vi) $\varepsilon_{i} \leq j_{i}$ for any P in \mathscr{C};
(vii) the ε_{i} are called the \mathscr{D}-orders of \mathscr{C}.

The divisor

$$
R=\operatorname{div}(W)+\left(\sum_{0}^{n} \varepsilon_{i}\right) \operatorname{div}(d t)+(n+1) \sum_{p} e_{p} P,
$$

where $d t$ is the differential of t and $e_{p}=\underset{i}{-m i n} \operatorname{ord}_{P_{i}}$, is the ramification divisor of \mathscr{D} and depends only on \mathscr{D}. Putting $\mathrm{R}=$ $=\Sigma r_{p} P$, we have

$$
\operatorname{deg} \mathrm{R}=\Sigma \mathrm{r}_{\mathrm{p}}=(2 \mathrm{~g}-2) \Sigma \varepsilon_{\mathrm{i}}+(\mathrm{n}+1) \mathrm{d}
$$

THEOREM 9.1: $r_{p} \geq \sum_{i=0}^{n}\left(j_{i}-\varepsilon_{i}\right)$ with equality if and only if det $C \neq 0(\bmod p)$, where $C=\left(c_{i s}\right)$ and $c_{i s}=\binom{j_{i}}{\varepsilon_{S}}$.

COROLLARY: (i) R is effective.

$$
\text { (ii) } r_{P}=0 \text { if and only if } j_{i}=\varepsilon_{i} \text { for } 0 \leq i \leq n \text {. }
$$

The points P where $r_{p}=0$ are called \mathscr{D}-ordinary; the others are called \mathscr{D}-Weierstrass. The number r_{p} is the weight of P. When \mathscr{D} is the canonical series, the \mathscr{D}-Weierstrass points are simply the Weierstrass poin'ts. This coincides with the classical definition.

When $\varepsilon_{i}=\mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{n}$, then \mathscr{D} is classical. Next, the estimate $\varepsilon_{i} \leq j_{i}$ is improved.

THEOREM 9.2: (i) Let P on \mathscr{C} have (\mathscr{D}, P)-orders j_{o}, \ldots, j_{n} and suppose that det $C^{\prime} \not \equiv 0(\bmod p)$, where $C^{\prime}=\left(c_{i s}^{\prime}\right)$ and $c_{i s}^{\prime}=\binom{j_{i}}{r_{s}}$, then $D^{\left(r_{o}\right)}{ }_{f}, \ldots, D^{\left(r_{n}\right)}{ }_{f}$ are linearly independent and $\varepsilon_{i} \leq r_{i}$.

$$
\text { (ii) If } i_{i>s}^{\Pi}\left(j_{i}-j_{S}\right) /(i-s) \not \equiv 0(\bmod p) \text {, then } \mathscr{D} \text { is }
$$

classical and $r_{p}=\sum_{i=0}^{n}\left(j_{i}-i\right)$

$$
\text { (iii) If } p>d \text { or } p=0 \text {, then } r_{p}=\sum_{0}^{n}\left(j_{i}-i\right) \text { for all }
$$ P in \mathscr{C}.

(iv) If ε is a \mathscr{D}-order and μ is an integer with $\binom{\varepsilon}{\mu} \not \equiv 0(\bmod p)$, then μ is also a \mathscr{D}-order.

$$
\text { (v) If } \varepsilon \text { is a } \mathscr{D} \text {-order and } \varepsilon<\text { p, then } 0,1, \ldots, \varepsilon-1
$$

are also \mathscr{D}-orders.
Entering into this theorem is the classical result of Lucas.
LEMMA 9.3: Let $A=a_{0}+a_{1} p+\ldots+a_{m} p^{m}$ and $B=b_{o}+b_{1} p+\ldots+b_{n} p^{m}$ be $p-$ adic expansions of A and B with respect to the prime p that is, $0 \leq a_{i}, b_{i} \leq p-1$. Then
(i) $\left(\begin{array}{c}A \\ B\end{array} \equiv\left(\begin{array}{c}{ }^{a}{ }_{b}\end{array}\right)\binom{a_{0}}{b_{1}} \ldots\left({ }_{b_{m}}^{a_{m}}\right)(\bmod p)\right.$;
(ii) $\binom{A}{B} \not \equiv 0(\bmod p)$ if and only if $a_{i} \geq b_{i}$, all i;

Proof: $(1+x)^{A}=(1+x)^{\sum a_{i} p^{1}}$

$$
=(1+x)^{a_{o}}\left(1+x^{p}\right)^{a_{1}} \ldots\left(1+x^{p^{m}}\right)^{a_{m}}
$$

Now, the result follows by comparing the coefficient of x^{B} on both sides.

10. CONSTRUCTION OF SOME LINEAR SYSTEMS

LEMMA 10.1: Let $|D|$ be a complete, non-special linear system and let j_{0}, \ldots, j_{n} be the $(|D|, P)$-orders, where $n=\operatorname{dim}|D|$. Then the $(|D+P|, P)$-orders are $0, j_{o}+1, \ldots, j_{n}+1$.

THEOREM 10.2: If .|D| is a complete, non-special, classical, linear system and $\left|D^{\prime}\right|$ is a complete, base-point-free, linear system, then $\left|D+D^{\prime}\right|$ is classical.

Let $\mathrm{P} \in \mathscr{C}$ and let j_{0}, \ldots, j_{n} be the $(\mathscr{D}, \mathrm{P})$-orders for \mathscr{D} canonical. Then $j_{0}+1=\alpha_{1}, \ldots, j_{g-1}+1=\alpha_{g}$ are the Weierstrass gaps at P that is, there does not exist f in $\bar{K}(\mathbb{C})$, regular outside P, such that $\operatorname{ord}_{p}(f)=-\alpha_{i}$.

THEOREM 10.3: Let $P \in \mathscr{C}$ and let $\alpha_{1}, \ldots, \alpha_{g}$ be the Weierstrass gap sequence at P. If the linear system $\mathscr{D}=|d P|$ for some positive integer d, then the (\mathscr{D}, P)-orders are $\{0,1, \ldots, d\} \backslash\left\{d-\alpha_{i} \mid \alpha_{i} \leq d\right\}$.

THEOREM 10.4: With P and $\alpha_{1}, \ldots, \alpha_{g}$ as above, let V be a canonical divisor, $s \geq 2$ an integer, and $\mathscr{D}=|V+s P|$. Then the $(\mathscr{D}, \mathrm{P})$-orders are

$$
\begin{aligned}
& i:=i \quad \text { for } i=0,1, \ldots, s-2, \\
& \therefore s-2=s-1+\alpha_{i} \text { for } i=1, \ldots, g .
\end{aligned}
$$

THEOREM 10.5: Let P in \mathscr{C} be an ordinary point for the canonical linear system $|V|$ and assume that $|V|$ is classical. Then, for any n such that $0 \leq \mathrm{n} \leq \mathrm{g}-1$, the linear system $\mathscr{D}=|\mathrm{V}-\mathrm{nP}|$ is a classical $\underset{2 \mathrm{~g}-2-\mathrm{n}}{\mathrm{g}-1-\mathrm{n}}$ without base points, and P is \mathscr{D}-ordinary.

An important result an linear series is also worth noting.

THEOREM 10.6: The generic curve of genus g has $a \gamma_{d}^{n}$ if and only if

$$
\mathrm{d} \geq \frac{\mathrm{n}}{\mathrm{n}+1} \mathrm{~g}+\mathrm{n}
$$

11. THE ESSENTIAL CONSTRUCTION

Given the curve \mathscr{C} with its linear system of hyperplanes and with N the number of its $G F(q)$-rational points, consider the set $\mathscr{F}=\left\{\mathrm{P} \mid \mathrm{P} \varphi \subset \mathrm{H}_{\mathrm{p}}\right\}$; compare $\S 4$ for the plane. So $\mathrm{P} \in \mathscr{F} \Leftrightarrow$

$$
\operatorname{det}\left[\begin{array}{ccc}
f_{o}^{q} & \cdots \cdots & f_{n}^{q} \\
D_{t}^{\left(j_{o}\right)} f_{f_{o}} & \cdots & D_{t}^{\left(j_{o}\right)^{\prime}} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
D_{t}^{\left(j_{n-1}\right)} f_{f_{0}} & \cdots & D_{t}^{\left(j_{n-1}\right)_{f}}
\end{array}\right]=0
$$

To give an outline first, take the classical case in which $j_{i}=1$. So, let

$$
W^{\prime}=\operatorname{det}\left[\begin{array}{lll}
f_{o}^{q} & \ldots \ldots & f_{n}^{q} \\
f_{o} & \ldots \ldots \ldots & f_{n} \\
\vdots & & \vdots \\
\cdot & & D^{(n-1)} f_{o} \ldots \\
D^{(n-1)} f_{n}
\end{array}\right]
$$

If $W^{\prime} \neq 0$, then W is a function of degree

$$
n(n-1)(g-1)+d(q+n)
$$

and the rational points are n-fold zeros of W^{\prime}. Hence

$$
N \leq(n-1)(g-1)+d(q+n) / n .
$$

Since \mathscr{D} is complete, $d \leq n+g$; hence

$$
\begin{aligned}
N & \leq(n-1)(g-1)+(n+g)(q+n) / n \\
& =q+1+g(n+q / n) .
\end{aligned}
$$

This has minimum value for $n=\sqrt{\mathrm{q}}$, in which case

$$
N \leq q+1+2 g \sqrt{q}
$$

More carefully, let

where t is a separating variable on \mathscr{C} and $v=\left(v_{0}, \ldots, v_{n-1}\right)$ with $0 \leq \mathrm{v}_{\mathrm{o}}<\ldots<\mathrm{v}_{\mathrm{n}-1}$.

THEOREM 11.1: (i) There exist integers v_{o}, \ldots, v_{n-1}, such that $0 \leq v_{0}<\ldots<v_{n-1}$ and $W_{t}(v, f) \neq 0$.
(ii) If v_{0}, \ldots, v_{n-1} are chosen successively so that v_{i} is as small as possible to ensure the linear independence of $D^{\left(v_{o}\right)} f_{f, \ldots, D}^{\left(v_{i}\right)}{ }_{f}$, then there exists an integer n_{o} with $0<n_{0} \leq n$ such that

$$
\begin{aligned}
& v_{i}=\varepsilon_{i} \text { for } i<n_{o} \\
& v_{i}=\varepsilon_{i+1} \text { for } i \geq n_{o}
\end{aligned}
$$

where $\varepsilon_{0}, \ldots, \varepsilon_{n}$ are the \mathscr{D}-orders; that is

$$
\left(v_{0}, \ldots, v_{n-1}\right)=\left(\varepsilon_{0}, \ldots, \varepsilon_{n_{0}-1}, \varepsilon_{n_{0}+1}, \ldots, \varepsilon_{n}\right) .
$$

(iii) If $v^{\prime}=\left(v_{o}^{\prime}, \ldots, v_{n-1}^{\prime}\right)$ and $W_{t}\left(v^{\prime}, f\right) \neq 0$, then $v_{i} \leq v_{i}^{\prime}$ for all i.

The integers v_{i} are the Frobenius \mathscr{D}-orders. They and S depend only on \mathscr{C}, where

$$
\begin{aligned}
S & =\operatorname{div}\left(W_{t}(v, f)\right)+\operatorname{div}(d t) \Sigma v_{i}+(q+n) E, \\
\operatorname{deg} S & =(2 g-2) \Sigma_{v_{i}}+(q+n) d .
\end{aligned}
$$

THEOREM 11.2: If $v \leq q$ is a Frobenius \mathscr{D}-order, then each nonnegative integer u such that $\binom{v}{u} \not \equiv 0(\bmod p)$ is a Frobenius \mathscr{D}-order. In particular, if $v_{i}<p$, then $v_{j}=j$ for $j \leq i$.

THEOREM 11.3: (i) If P is a $G F(q)$-rational point of \mathscr{C}, then

$$
m_{p}(S) \geq{ }_{i}^{n} \underline{\underline{E}}_{1}\left(j_{i}-v_{i-1}\right)
$$

with equality if and only if det $C \not \equiv 0(\bmod p)$, where

$$
C=\left(c_{i r}\right) \text { and } c_{i r}=\binom{j_{i}}{v_{r-1}}, i, r=1, \ldots, n .
$$

(ii) If $\mathrm{Pe} \mathscr{C}$ but not $\mathrm{GF}(\mathrm{q})$-rational, then

$$
m_{p}(S) \geq \sum_{i=1}^{n-1}\left(j_{i}-v_{i}\right) .
$$

If. det $C^{\prime} \equiv 0(\bmod p)$, the inequality is strict, where

$$
C^{\prime}=\left(c_{i r}^{\prime}\right) \text { and } c_{i r}^{\prime}=\binom{j_{i-1}}{v_{r-1}}, i, r=1, \ldots, n .
$$

THEOREM 11.4: Let P be a $G F(q)-$ rational point of \mathscr{C}. If $0 \leq m_{0}<\ldots<m_{n-1}$ and $\operatorname{det} C^{\prime \prime} \neq 0(\bmod p)$, then $v_{i} \leq m_{i}$ for all i, where $C^{\prime \prime}=\left(c_{i r}^{\prime \prime}\right)$ and

$$
c_{i r}^{\prime \prime}=\left(\frac{j_{i}-j_{1}^{1}}{m_{r-1}}\right), i, r=1, \ldots, n .
$$

COROLLARY 1: (i) If P is a $G(q)$-rational point of \mathscr{C}, then $v_{i} \leq j_{i+1}{ }^{-j_{i}}$ for $i=0, \ldots, n-1$ and $m_{p}(S) \geq n j_{1}$.
(ii) If (a) $1 \leq i<\sum_{r \leq n}\left(j_{r}-j_{i}\right) /(r-i) \neq 0 \quad(\bmod \quad p)$,
or (b) $j_{i} \neq j_{r}(\bmod p)$ for $i \neq r$, or $(c) p \geq d$, then $v_{i}=i$ for $i=0, \ldots, n-1$ and $m_{p}(S)=n+\sum_{i=1}^{n}\left(j_{i}-i\right)$.

COROLLARY 2: If $v_{i} \neq \varepsilon_{i}$ for some $i<n$, then each GF(q)-rational
point of \mathscr{C} a \mathscr{D}-Weierstrass point.
COROLLARY 3: If \mathscr{C} has some $G F(q)-$ rational point, then $v_{i} \leq i+d-n$, all i. If also \mathscr{D} is complete, then $\mathrm{v}_{\mathrm{i}}=\mathrm{i}$ for $\mathrm{i}<\mathrm{d}-2 \mathrm{~g}$.

THEOREM 11.5: (THE MAIN RESULT) Let X be an irreducible, nonsingular, projective, algebraic curve of genus g defined over $K=G F(q)$ with N rational points. If there exists on X a linear system γ_{d}^{n} without. base points, and with order sequence $\varepsilon_{0}, \ldots, \varepsilon_{n}$ and Frobenius order sequence v_{o}, \ldots, v_{n-1}, then

$$
N \leq \frac{1}{n}\left\{(2 g-2) \sum_{0}^{n-1} v_{i}+(q+n) d\right\} .
$$

If also $v_{i}=\varepsilon_{i}$ for $i<n$, then

$$
\varepsilon_{\mathrm{n}} \mathrm{~N}+\sum_{\mathrm{P}} \mathrm{a}_{\mathrm{P}}+\sum_{\mathrm{p}, \mathrm{~b}_{\mathrm{p}}} \leq(2 \mathrm{~g}-2){\underset{\mathrm{L}}{\mathrm{n}} \varepsilon_{\mathrm{i}}+(\mathrm{q}+\mathrm{n}) \mathrm{d},}^{\mathrm{n}},
$$

where P is a K-rational point of X, where $P^{\prime} \epsilon X$ but not K-rational and where

$$
a_{p}=\sum_{i \underline{n}}\left(j_{i}-\varepsilon_{i}\right), \quad b_{p}=\sum_{i} \sum_{n}\left(j_{i}-\varepsilon_{i}\right)
$$

with j_{0}, \ldots, j_{n} the (\mathscr{D}, P)-orders.
COROLLARY: $|\mathrm{N}-(\mathrm{q}+1)| \leq 2 \mathrm{~g} \sqrt{\mathrm{q}}$.
THEOREM 11.6: If X is non-singular, $p \geq g \geq 3$ with $q=p h$, and the canonical system is classical, then

$$
N \leq 2 q+g(g-1)
$$

Notes:(1) If $p \geq 2 g-1$, then the canonical system is classical.
(2) This gives a better bound than $\mathrm{S}_{\mathrm{g}}=\mathrm{q}+1+\mathrm{g}[2 \sqrt{\mathrm{q}}]$ when $|\sqrt{q}-g|<\sqrt{g+1}$.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with $\frac{1}{2}(p+3) \geq g \geq 3$, then

$$
N \leq\left(\frac{2 g-3}{g-2}\right) q+g(q-2) .
$$

Note : This is better than S_{g} when

$$
\left|\sqrt{q}-\frac{g(g-2)}{g-1}\right|<\left\{(g-2)\left(g^{2}-g-1\right)\right\}^{\frac{1}{2}} /(g-1)
$$

THEOREM 11.8: If X is non-singular with classical canonical system and a K-rational point, then

$$
N \leq(g-n-2)(g-1)+(2 g-n-2)(q+g-n-1)(g-n-1)^{-1}
$$

for $0 \leq n \leq g-1$.

12. ELLIPTIC CURVES

The number of elements of $a \gamma_{d}^{n}$ on a curve of genus g with $n+1$ coincident points, that is \mathscr{D}-Weierstrass points, is $(\mathrm{n}+1)(\mathrm{d}+\mathrm{ng}-\mathrm{n})$. When $g=1$, this number is $d(n+1)$. If \mathscr{D} consists of all curves of degree r and \mathscr{C} is a plane non-singular cubic, then $n=\frac{1}{2} r(r+3)$, $\mathrm{d}=3 \mathrm{r}$. The condition for $\mathrm{a} \gamma_{\mathrm{d}}^{\mathrm{n}}$ to exist is, from Theorem 10.6 , that $d \geq n /(n+1)+n$. So this only allows γ_{3}^{2} and γ_{6}^{5}, whence $d=n+1$ and the number of \mathscr{D}-Weierstrass points is $(\mathrm{n}+1)^{2}$. From the RiemannRoch theorem, as every series is non-special on \mathscr{C}, a complete
series γ_{d}^{n} satisfies $d=n+1$.
For $n=2$, the \mathscr{D}-Weierstrass points are the 9 inflexions. For $n=5$, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics $=$ points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If $\mathrm{p} X(\mathrm{n}+1)$, the \mathscr{D}-W-points have multiplicity one .
(ii) If $p^{k} \mid(n+1), p^{k+1} \nmid(n+1)$ with $k \geq 1$, then one of the following holds:
(a) \mathscr{C} is ordinary and there are $(\mathrm{n}+1)^{2} / \mathrm{p}^{\mathrm{k}} \mathscr{D}-\mathrm{W}-$ points with multiplicity p^{k};
(b) \mathscr{C} is supersingular and there are $(\mathrm{n}+1)^{2} / \mathrm{p}^{2 \mathrm{k}}$ $\mathscr{D}-\mathrm{W}$-points with multiplicity $\mathrm{p}^{2 \mathrm{k}}$.

THEOREM 12.2: If \mathscr{C} is elliptic with origin 0 and \mathscr{D} is a complete linear system on \mathscr{C}, then
(i) \mathscr{D} is classical;
(ii) \mathscr{D}° is Frobenius classical except perhaps when $\mathscr{D}=|(\sqrt{q}+1) 0|$;
(iii) $|(\sqrt{q}+1) 0|$ is Frobenius classical if and only if $N<(\sqrt{q}+1)^{2}$.

13. HYPERELLIPTIC CURVES

As in $\S 5$, if $p \neq 2$, then \mathscr{C} has homogeneous equation $y^{2} z^{d-2}=z^{d} f(x / z)$ with $g=\left[\frac{1}{2}(d-1)\right]$. Let $g>1$ and let P_{1}, \ldots, P_{n} be the ramification points of the double cover ($=$ double points of the $\gamma_{2}^{\frac{1}{2}}$ on \mathscr{C});
then $n=2(g+1)$ from the formula beginning $\$ 12$. When d is even, they are the points with $y=0$; when d is odd, they are these plus $P(0,1,0)$. Let n_{o} be the number of K-rational P_{i}.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_{2}^{1}=$ $|D|$ and n, n_{o} as above. If there is a positive integer n_{1} such that $\left|\left(n_{1}+g\right) D\right|$ is Frobenius classical, then

$$
|N-(q+1)| \leq g\left(2 n_{1}+g\right)+\left(2 n_{1}+g\right)^{-1}\left\{g\left(q-n_{o}\right)-g^{3}-g\right\} .
$$

Note: If $p \geq 2\left(n_{1}+g\right)$, then the hypothesis is fulfilled.
COROLLARY: Let $p \geq 5$ with $p=c^{2}+1$ or $p=c^{2}+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with $g>1$ over $G F(p)$. Then

$$
|N-(p+1)| \leq g[2 \sqrt{p}]-1
$$

14. PLANE CURVES

Let \mathscr{C} be a non-singular, plane curve of degree d over $K=G F(q)$; then $g=\frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as $z=0$.

Let x, y be affine coordinates. The monomials $x^{i} y^{j}, i, j \geq 0, i+j \leq m$ span $L(m D)$ and are linearly independent for $m<d$. Hence dim|mD|= $=\frac{1}{2} m(m+3)$ for $m<d$. Also, $m D$ is a special divisor for $m \leq d-3$. Thus $|\mathrm{mD}|$ is cut out by all curves of degree m .

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with $m \leq d-3$ such that $|m D|$ is Frobenius classical, then

$$
N \leq \frac{1}{2}\left(m^{2}+3 m-2\right)(g-1)+2 d(m+3)^{-1}\left\{q+\frac{1}{2} m(m+3)\right\}
$$

Proof. Put (i) $\frac{1}{2} m(m+3)$ for n, (ii) $\frac{1}{2}(d-1)(d-2)$ for g, (iii) md for $d,(i v)$ for v_{i}, in theorem 11.5 .

Notes: (1) When $m \leq p / d$, then $|m D|$ is Frobeinius classical.
(2) For $m=1$, we have that $4 \leq d \leq p$ implies that

$$
\mathrm{N} \leq \frac{1}{2} \mathrm{~d}(\mathrm{~d}+\mathrm{q}-1),
$$

as in theorem 4.1.
(3) For $m=2$, we have that $5 \leq d \leq \frac{1}{2}$ p implies that

$$
\mathrm{N} \leq \frac{2 \mathrm{~d}}{5}\{5(\mathrm{~d}-2)+\mathrm{q}\},
$$

which is required in theorem 19.1.
Let $f(x, y)$ be homogeneous of degree d with $f(x, 1)$ having distinct roots in \bar{K}. A Thue curve is given by

$$
\mathscr{E}_{\mathrm{d}}: \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{z}^{\mathrm{d}}
$$

It is non-singular.
THEOREM 14.2: Let D be a divisor cut out by a line on \mathscr{C}_{d}. If m is a positive integer such that $|m D|$ is Frobenius classical, then

$$
N \leq(n-1)(g-1)+\frac{1}{n}\left\{m d(q+n)-d A_{m}-d_{o} B_{m}\right\},
$$

where n is the dimension of $|m D|$;

$$
n= \begin{cases}\frac{1}{2} m(m+3) & \text { for } m \leq d-3 \\ d m-g \text { for } m>d-3\end{cases}
$$

$$
\begin{aligned}
& g=\frac{1}{2}(d-1)(d-2), \\
& d_{o}=\text { number of } K \text {-rational roots of } f(x, 1), \\
& A_{m}= \begin{cases}\frac{1}{24} m(m-1)\{4(d-m-1)(m+4)+(m-2)(m-5)\} & \text { for } m \leq d-3 \\
\frac{1}{24}(d-1)(d-2)(d-3)(d+4) & \text { for } m>d-3,\end{cases} \\
& B_{m}= \begin{cases}d m-\frac{1}{2} m(m+3) & \text { for } m \leq d-3 \\
g & \text { for } m>d-3 .\end{cases}
\end{aligned}
$$

Note: When $m \leq p / d$, then $|m D|$ is Frobenius classical.
A Fermat curve is a special case of a Thue curve given by

$$
\bar{\xi}_{d}: a x^{d}+b y^{d}=z^{d}
$$

with $a, b \in K \backslash\{0\}$.

THEOREM 14.3: For \mathscr{F}_{d} with the same conditions as above,

$$
N \leq(n-1)(g-1)+\frac{1}{n}\left\{m d(q+n)-3 d A_{m}-d_{1} B_{m}\right\} .
$$

with n, g, A_{m}, B_{m} as above, but d_{1} is the number of points of \mathscr{F}_{d} with $x y z=0$.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1 , we give the value of $N_{q}(g)$ or the best, known bound for $\mathrm{g} \leq 5$ and $\mathrm{q} \leq 49$ arising from results of Serre [12], [13] and the preceding sections. Also included in the table is the bound $\quad \mathrm{S}_{\mathrm{g}}=\mathrm{q}+1+\mathrm{g}[2 \sqrt{\mathrm{q}}]$; see $\S 2$.

TABLE 1

The maximum number points on an algebraic curve

q	[2 $\sqrt{9}]$	N_{q} (1)	$\mathrm{N}_{\mathrm{q}}(2) \mathrm{S}_{2}$		N_{q}	S_{3}	$\mathrm{N}_{\mathrm{q}}(4)$	S_{4}	$\mathrm{N}_{\mathrm{q}}(5$	S_{5}
2	2	5	6	7	7	9	8	11	9	13
3	3	7	8	10	10	13	12	16	≤ 15	19
4	4	9	10	13	14	17	15	21	≤ 18	25
5	4	10	12	14	16	18	18	22	≤ 22	26
7	5	13	7	18	20	23	24-25	28	≤ 29	33
8	5	14	18	19	24	24		29	≤ 32	34
9	6	16	20	22	28	28	26-30	34	≤ 36	40
11	6	18	24	24	28	30	32-34	36	≤ 40	42
13	7	21	26	28	32	35	36-38	42	≤ 45	49
16	8	25	33	33	38	41		49		57
17	8	26	32	34	40	42	≤ 46	50	≤ 54	58
19	8	28	36	36	44	44	≤ 50	52	≤ 58	60
23	9	33	42	42	≤ 48	51	≤ 58	60	≤ 66	69
25	10	36	46	46	56	56	66	66		76
27	10	38	48	48		58		68		78
29	10	40		50		60		70	≤ 78	80
31	11	43	52	54		65	≤ 74	76	≤ 82	87
32	11	44	53	55		66		77		88
37	12	50	60	62		74		86	≤ 94	98
41	13	54	66	68		81		94	≤ 102	107
43	13	57	68	70		83		96	≤ 106	109
47	13	61		74		87		100		113
49	14	64		78	92	92		106		120

16. ELLIPTIC CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves over an arbitrary field K offers an appealing mixture of geometric and algebraic arguments. Let \mathscr{C} be a non-singular cubic in $P G(2, q)$. For the projective classification when $K=G F(q)$, see [6] Chapter 11. Although \mathscr{C} may have no inflexion, up to isomorphism it may be assumed to have one, 0 .

THEOREM 16.1: If $\mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ are cubic curves in $\operatorname{PG}(2, K)$ such that the divisors $\mathscr{C} \cdot \mathscr{C}^{\prime}=\sum_{i=1}^{9} P_{i}$ and $\mathscr{C} \cdot \mathscr{C}^{\prime \prime}={ }_{i=1}^{8}{ }_{1} P_{i}+Q$, then $Q=P_{9}$.

Proof. (Outline) Through $\mathrm{P}_{1}, \ldots, \mathrm{P}_{8}$ there is a pencil \mathscr{F} of cubic curves to which $\mathscr{C}, \mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ belong. Any curve of \mathscr{F} has the form $V(F+\lambda G)$ and so contains $V(F) \cap V(G)$. By Bézout's theorem $|V(F) \cap V(G)|=9$. Hence $Q=P_{9}$.

For a detailed proof, see [3], Chapter 5.
Theorem 16.1 is known as the theorem of the nine associated points. It has numerous corollaries of which we give a variety before the important theorem 16.7.

THEOREM 16.2: Any two inflexions of \mathscr{C} are collinear with a third.

Proof. Let P_{1}, P_{2} be inflexions of \mathscr{C} with corresponding tangents ℓ_{1}, ℓ_{2}. Let $\ell=P_{1} P_{2}$ meet \mathscr{C} again at P_{3}, and let ℓ_{3} be the tangent at P_{3} mecting \mathscr{C} again at Q. Then

$$
\begin{gathered}
\mathscr{C} \cdot \ell_{1}=3 P_{1}, \mathscr{C} \cdot \ell_{2}=3 P_{2}, \mathscr{C} \cdot l_{3}=2 P_{3}+Q \\
\mathscr{C} . \ell=P_{1}+P_{2}+P_{3} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
\mathscr{C} \cdot \ell_{1} \ell_{2} \ell_{3} & =3 P_{1}+3 P_{2}+2 P_{3}+Q \\
\mathscr{6} \cdot \ell^{3} & =3 P_{1}+3 P_{2}+3 P_{3} .
\end{aligned}
$$

By the previous theorem, $Q=P_{3}$; so P_{3} is an inflexion.

THEOREM 16.3. If P_{1} and Q_{1} are any two points of \mathbb{C}, the crossratio of the four tangents through P_{1} is the same as the crossratio of the four tangents through Q_{1}.

Proof. Let $P_{1} Q_{1}$ meet \mathscr{C} again at R_{1}. Let r be a tangent to through R_{1} with point of contact $R_{2}=R_{3}$. Let $P_{1} P_{2} P_{3}$ be any line through P_{1} with P_{2}, P_{3} on \mathscr{C}. Let $R_{2} P_{2}$ meet \mathscr{C} again at Q_{2} and let $\mathrm{R}_{3} \mathrm{P}_{3}$ meet \mathscr{C} again at Q_{3}. We use the previous theorem to show that Q_{1}, Q_{2}, Q_{3} are collinear.

Write $\quad \ell_{i}=P_{i} R_{i} Q_{i}, \quad i=1,2,3 ;$ let $\quad p=P_{1} P_{2} P_{3}, \quad r=R_{1} R_{2}, \quad q=Q_{1} Q_{2} S$ with S the third point of Q on \mathscr{C}.

Then $\mathscr{C} \cdot \ell_{1} \ell_{2} \ell_{3}={ }_{i=1}^{3}\left(P_{i}+Q_{i}+R_{i}\right)$
$\mathscr{C} . \operatorname{prq}={ }_{i=1}^{\sum_{1}}\left(P_{i}+R_{i}\right)+Q_{1}+Q_{2}+S$.

Again by theorem $16.1, S=Q_{3}$. When. P_{2} and P_{3} coincide, so do Q_{2} and Q_{3}. So there is an algebraic bijection τ from the pencil \mathscr{F} through P_{1} and the pencil G through Q_{1} in which the tangents correspond. Hence τ is projective and the cross-ratios of the tangents are equal.

THEOREM 16.4. (Pascal's Theorem)

If $\mathrm{P}_{1} \mathrm{Q}_{2} \mathrm{P}_{3} \mathrm{Q}_{1} \mathrm{P}_{2} \mathrm{Q}_{3}$ is a hexagon inscribed in a conic \mathscr{P}, then the intersections of opposite sides, that is R_{1}, R_{2}, R_{3}, are collinear.

Proof. The two sets of three lines

$$
\left.P_{1} Q_{2}\right)\left(P_{3} Q_{1}\right)\left(P_{2} Q_{3}\right) \quad \text { and } \quad\left(Q_{1} P_{2}\right)\left(Q_{3} P_{1}\right)\left(Q_{2} P_{3}\right)
$$

are cubics through the nine points $P_{i}, Q_{i}, R_{i}, i=1,2,3$; there is an irreducible cubic \mathscr{C} in the pencil they determine. Also in the pencil is the cubic consisting of \mathscr{P} and the line $R_{3} R_{2}$. So, by theorem 16.1, this cubic contains the ninth point R_{1}, which cannot lie on .P. So $R_{3} R_{2} R_{1}$ is a line.

THEOREM 16.5: Let $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ be the sides of a complete quadrí lateral in an affine plane and let C_{i} be the circumcircle of the triangle obtained by deleting ℓ_{i}. Then $C_{1} \cap C_{2} \cap C_{3} \cap C_{4}=\{P\}$.

Proof.

There is a pencil of cubics through the vertices of the quadrilateral and the two circular points at infinity. The four cubics $C_{i}+l_{i}, i=1,2,3,4$, contain these eight points and therefore the ninth associated point P. As each ℓ_{i} contains three of the eight initial points, it does not contain P. Hence P lies on each C_{i}.

Now we show that an elliptic curve \mathscr{C} is an abelian group. As above we take 0 as an inflexion.

Definition: For P, Q on \mathscr{C}, let $\mathscr{E} . \mathrm{PQ}=\mathrm{P}+\mathrm{Q}+\mathrm{R}$ and let $\mathscr{C} .0 \mathrm{R}=0+\mathrm{R}+\mathrm{S}$; define $S=P+Q$.

LEMMA 16.6: (i) $0 n \mathscr{C}$, the points $0, \mathrm{P},-\mathrm{P}$ are collinear.
(ii) P, Q, R are collinear on \mathscr{C} if and only if $P+Q+R=0$.

THEOREM 16.7: Under the additive operation, \mathscr{C} is an abelian group.

Proof. The only non-trivial property to verify is the associative law.

Apart from \mathscr{C}, consider the two cubics consisting of three lines given by the rows and columns of the array

$$
\begin{array}{ccc}
\mathrm{P}_{1} & \mathrm{P}_{2} & -\mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{P}_{2}+\mathrm{P}_{3} & \mathrm{P}_{2}-\mathrm{P}_{3} & 0 \\
\mathrm{X} & \mathrm{P}_{3} & \mathrm{P}_{1}+\mathrm{P}_{2}
\end{array}
$$

Again, by theorem 16.1, X lies on both these cubics. So, $X=-P_{1}-\left(P_{2}+P_{3}\right)=-\left(P_{1}+P_{2}\right)-P_{3}$; hence, if Y is the third point of \mathscr{C} on $0 X$, then

$$
Y=P_{1}+\left(P_{2}+P_{3}\right)=\left(P_{1}+P_{2}\right)+P_{3} .
$$

Note: \mathscr{C} has been drawn as $y^{2}=(x-a)(x-b)(x-c)$ with $a<b<c$, but the point of inflexion natural to this picture is at infinity.

THEOREM 16.8: (Waterhouse [21]). For any integer $N=q+1-t$ with $|t| \leq 2 \sqrt{q}$, there exists an elliptic cubic in $P G(2, q), q=p^{h}$, with precisely N rational points if and only if one of the following conditions on t and q is satisfied:
(i) $(t, p)=1$
(ii) $\mathrm{t}=0$
h odd or $\mathrm{p} \neq 1(\bmod 4)$
(iii) $\mathrm{t}= \pm \sqrt{\mathrm{q}}$
h even and $p \not \equiv 1(\bmod 3)$
(iv) $t= \pm 2 \sqrt{q}$
h even
(v) $\mathrm{t}= \pm \sqrt{2 \mathrm{q}}$
h odd and $p=2$
(vi) $\mathrm{t}= \pm \sqrt{3 \mathrm{q}}$
h odd and $\mathrm{p}=3$

COROLLARY: $N_{q}(1)=\left\{\begin{array}{l}q+[2 \sqrt{q}] \text { if } p \text { divides }[2 \sqrt{q}], \\ h \text { is odd and } h \geq 3 ; \\ q+1+[2 \sqrt{q}] \text { otherwise. }\end{array}\right.$

17. k-ARCS ON ELLIPTIC CURVES

As in $\S 16$, the curve \mathscr{C} is a non-singular cubic in $\operatorname{PG}(2, q)$ with inflexion 0.

THEOREM 17.1: (Zirilli [22]) If $|\mathscr{C}|=2 k$, then there exists a $k-\operatorname{arc} K$ on \mathscr{C}.

Proof. Since \mathscr{C} is an abelian group, the fundamental theorem says that \mathscr{C} is a direct product of cyclic groups of prime power order. By taking a subgroup of order 2^{r-1} in a component of order 2^{r}, we obtain a subgroup G of \mathscr{C} of index 2 . Let $K=\mathscr{C} \backslash G$. Let $P_{1}, P_{2} \in K$. Then $-P_{1} \in K$ and $P_{2}=-P_{1}+Q$ for some Q in G. Hence $P_{1}+P_{2}=Q$ and $P_{1}+P_{2}-Q=0$. Since $-Q$ is in G, no three points of K are collinear.

The remainder of $\S 17$ follows Voloch [19].
The object is now to show that \mathscr{K} can be chosen to be complete. First we construct \mathscr{K} in a different way.

Let $U_{0}=P(1,0,0), U_{1}=P(0,1,0), \quad U_{2}=P(0,0,1)$. Also, with $K=G F(q)$, let $K_{o}=G F(q) \backslash\{0\}$ and $K_{o}^{2}=\left\{t^{2} \mid t \in K_{0}\right\}$.

Now, let \mathscr{C} in $P G(2, q), q$ odd, have equation

$$
y^{2} z=x^{3}+a_{2} x^{2} z+a_{1} x z^{2}+a_{0} z^{3}
$$

Also suppose it is non-singular with $2 k$ points. The point U_{1} is an inflexion and we take this as the zero of \mathscr{C} as an abelian group. Since $|\mathscr{C}|$ is even, so \mathscr{C} has an element of order 2 , which necessarily is a point of contact of a tangent through U_{1}. Choose the tangent as $x=0$ and the point of contact as U_{2}. Thus $a_{0}=0$ and \mathscr{C} has equation

$$
\begin{equation*}
y^{2} z=x^{3}+a_{2} x^{2} z+a_{1} x z^{2} \tag{17.1}
\end{equation*}
$$

Define

$$
\theta: \mathscr{C} \rightarrow \mathrm{K}_{\mathrm{o}} / \mathrm{K}_{\mathrm{o}}^{2} \quad \text { by }
$$

$$
U_{1} \Theta=K_{o}^{2} ; U_{2} \theta=a_{1} K_{o}^{2}, P(x, y, 1) \theta=x K_{o}^{2} \text { for } x \neq 0
$$

Write $K_{o} / K_{o}^{2}=\left\{1, \nu \mid \nu^{2}=1\right\}$.

LEMMA 17.2: θ is a homomorphism.
Proof. If $P=P(x, y, 1)$, then $-P=P(x,-y, 1)$.
So $P \theta=(-P) \theta$, this also holds for U_{1} and U_{2}. Hence, if $P_{1}+P_{2}+P_{3}=0$, then $P_{1}+P_{2}=-P_{3}$ and $\left(P_{1}+P_{2}\right) \theta=\left(-P_{3}\right) \theta=P_{3} \theta=1 /\left(P_{3} \theta\right)$. If it is shown that $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$, then $\left(P_{1}+P_{2}\right) \theta=\left(P_{1} \theta\right)\left(P_{2} \theta\right)$.

Let $P_{i}=P\left(x_{i}, y_{i}, 1\right), i=1,2,3$. Since $P_{1}+P_{2}+P_{3}=0$, so P_{1}, P_{2}, P_{3} are collinear, whence there exist m and c in K such that $y_{i}=m x_{i}+c$, $i=1,2,3$. So

$$
(m x+c)^{2}-\left(x^{3}+a_{2} x^{2}+a_{1} x\right)=\left(x_{1}-x\right)\left(x_{2}-x\right)\left(x_{3}-x\right)
$$

Thus $x_{1} x_{2} x_{3}=c^{2}$ and so $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$.
If $\left(P_{1}, P_{2}\right)=\left(U_{1}, P_{2}\right)$, then $\left(P_{1}+P_{2}\right) \theta=P_{2} \theta=\left(P_{1} \theta\right)\left(P_{2} \theta\right)$. If $\left(P_{1}, P_{2}\right)=\left(P_{1}, U_{2}\right)$ and $P_{1}=P\left(x_{1}, y_{1}, 1\right)$, then $P_{1}+U_{2}=P\left(x_{2}, y_{2}, 1\right)$ with $\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{a}_{1}$.

Hence $\left(P_{1}+U_{2}\right) \theta=x_{2}=a_{1} / x_{1}$

$$
=x_{1}^{2}\left(a_{1} / x_{1}\right)=x_{1} a_{1}=\left(P_{1} \theta\right)\left(U_{2} \theta\right)
$$

So the homomorphism is established in all cases.

LEMMA 17.3: Θ is surjective for $q \geq 7$.
Proof. Since $P\left(b x^{2}, y, 1\right) \theta=b x^{2}=b$, it suffices to find a point Q on $\mathscr{C}^{\prime}=V\left(F\left(b x^{2}, y, z\right)\right)$ where $\mathscr{C}=V(F(x, y, z))$. So \mathscr{C}^{\prime} has equation

$$
y^{2} z^{4}=\left(b x^{2}\right)^{3}+a_{2}\left(b x^{2}\right)^{2} z^{2}+a_{1}\left(b x^{2}\right) z^{4}
$$

However, we require Q not on $V(x z)$. But $V(z) \cap \mathscr{C}^{\prime}=\left\{U_{1}\right\}$ and $V(x) \cap \mathscr{C}^{\prime}=\left\{U_{1}, U_{2}\right\}$. If we put $y=t x$, we see that \mathscr{C}^{\prime} is also elliptic and so has at least $(\sqrt{q}-1)^{2}$ points. Since $(\sqrt{q}-1)^{2}>2$ for $q \geq 7$, there exists the required point Q.

LEMMA 17.4: $\not \mathscr{K}=\mathscr{C}$, ker θ is a k -arc.
Proof. Let $G=k e r \theta$. Then, from the previous two lemmas, $G<\mathscr{C}$ with $[\mathscr{C}: G]=2$. Then, if $P \in G, P \Theta=1$; if $P \in K, P \theta=v$. Suppose P_{1}, P_{2}, P_{3} in \mathscr{K} are collinear. So $P_{1}+P_{2}+P_{3}=0$, whence $\left(P_{1}+P_{2}+P_{3}\right) \theta=0 \theta$. So $\left(P_{1} \theta\right)\left(P_{2} \theta\right)\left(P_{3} \theta\right)=1$, whence $v^{3}=1$, whence $v=1$, a contradiction.

This lemma just repeats lemma 17.1 using the homomorphism θ.
THEOREM 17.5: \mathscr{H} is complete for $q \geq 311$.
Proof. Let $P_{0} \in \operatorname{PG}(2, q) \backslash \mathcal{K}$. It must be shown that $\mathscr{K} \cup\left\{\mathrm{P}_{\mathrm{o}}\right\}$ is not a $(k+1)-a r c$. There are three cases: (a) $P_{0} \in \mathscr{C} \backslash \mathcal{K},(b) P_{0}=P\left(x_{0}, y_{0}, 1\right)$, (c) $P_{0}=P\left(1, y_{0}, 0\right)$.

Case (a). There are at most four tangents through P_{O} with point of contact Q in \mathscr{K}. Since $k=\frac{1}{2}|\mathscr{C}|>\frac{1}{2}(\sqrt{q}-1)^{2}>4$, there exists Q in \mathscr{K} which is not such a point of contact. So $2 Q \neq-P_{0}$ and $Q \neq-\left(P_{0}+Q\right)$. Also $-\left(P_{0}+Q\right) \in \mathscr{K}$, as otherwise $Q \in G=\mathscr{C} \backslash \mathcal{K}$. So P_{0}, Q, $-\left(P_{0}+Q\right)$ are distinct collinear points of $\mathscr{K} \cup\left\{P_{o}\right\}$.

Case (b). Let \mathscr{C}^{\prime} be the elliptic curve with affine equation

$$
\begin{equation*}
y^{2}=v^{3} x^{4}+v^{2} a_{2} x^{2}+v a_{1} \tag{17.2}
\end{equation*}
$$

Define the following functions on \mathscr{C}^{\prime} :

$$
\begin{aligned}
& U=v x^{2}, \quad Z=x y, \quad A=\left(y_{0}-Z\right) /\left(x_{0}-U\right) \\
& B=A^{2}-a_{2}, \quad C=2 A Z-a_{1}-2 A^{2} U \\
& D=(U-B)^{2}+4\left(C+B U-U^{2}\right)
\end{aligned}
$$

Then there exists a double cover

$$
\Psi: \mathscr{D} \rightarrow \mathscr{C}^{\prime}
$$

defined by $W^{2}=D$; that is, for any point $P(x, y, 1)$ of \mathscr{C}^{\prime}, there are two points $P(x, y, W, 1)$ of \mathscr{D}. Now, let $P(x, y, W, 1)$ be a rational point of \mathscr{D}. Then, from the equation for \mathscr{C}^{\prime},

$$
x^{2} y^{2}=v^{3} x^{6}+v^{2} a_{2} x^{4}+v a_{1} x^{2}
$$

whence

$$
\begin{equation*}
z^{2}=U^{3}+a_{2} U^{2}+a_{1} U \tag{17.3}
\end{equation*}
$$

Hence
(1) $\mathrm{P}=\mathrm{P}(\mathrm{U}, \mathrm{Z}, 1) \in \mathscr{K}$;
(2) $P P_{0}$ has equation $y-Z=A(x-U)$;
(3) PP_{o} meets \mathscr{C} is two points other than P whose x -coordinates satisfy

$$
\begin{equation*}
x^{2}-(B-U) x-\left(C+B U-U^{2}\right)=0 \tag{17.4}
\end{equation*}
$$

The last follows by substitution from (2) in (17.1), for we have

$$
\{Z+A(x-U)\}^{2}=x^{3}+a_{2} x^{2}+a_{1} x .
$$

Then, from (17.3),

$$
\begin{aligned}
& \left(U^{3}+a_{2} U^{2}+a_{1} U\right)-\left(x^{3}+a_{2} x^{2}+a_{1} x\right) \\
& +2 Z A(x-U)+A^{2}(x-U)^{2}=0
\end{aligned}
$$

Cancelling $x-U$ gives (17.4).
Now, let $\mathscr{C} \cap P P_{0}=\{P, Q, R\}$. The discriminant of (17.4) is

$$
(B-U)^{2}+4\left(C+B U-U^{2}\right)=D=W^{2} .
$$

So Q and R are rational points of \mathscr{C}. Since P, Q, R are collinear $(P \theta)(Q \theta)(R \theta)=1$. As Pe.K, so $P \theta=\nu$, whence $(Q \theta)(R \theta)=v$. So one of Q a nd R, say Q, is in \mathcal{K}. Hence, if $P \neq Q$, there are three collinear points P, P_{0}, Q of $\mathscr{K} U\left\{P_{0}\right\}$.
it remains to examine the condition that $P \neq Q$. There are at most six tangents to \mathscr{C} through $\mathrm{P}_{\mathrm{o}}([6] \mathrm{p} .252)$. So, if $\mathrm{P}=\mathrm{Q}$ or $\mathrm{P}=\mathrm{R}$, there are at most six choices for P, hence 12 choices for (x, y) and 24 choices for $P(x, y, W, 1)$ on \mathscr{D}. As $|\mathscr{C} \cap \cap V(x)| \leq 2$ and $|\mathscr{C} \cap V(z)|=0$, so $|\mathscr{D} \cap V(x)| \leq 4$ and $|\mathscr{D} \cap V(z)|=0$. So we require that \mathscr{D} has at least $24+4+1=29$ rational points.

By the Hurwitz formula ([5] p. 301 or [3] p.215),

$$
\begin{align*}
2 \mathrm{~g}(\mathscr{D})-2 & =2\left\{2 \mathrm{~g}\left(\mathscr{C}^{\prime}\right)-2\right\}+\operatorname{deg} \mathrm{E} \tag{17.5}\\
& =\operatorname{deg} \mathrm{E} .
\end{align*}
$$

Here, E is the ramification divisor (cf. §9) and

$$
\begin{aligned}
\operatorname{deg} E= & \# \text { points of ramification } \\
= & \# \text { points with } D=0 \\
= & \# \text { points such that } Q \text { and } R \text { have } \\
& \text { the same } x \text {-coordinate. }
\end{aligned}
$$

If $Q=P\left(x_{1}, y_{1}, 1\right)$ and $R=P\left(x_{1}, y_{2}, 1\right)$, then $y_{2}= \pm y_{1}$; if $y_{2}=$ $=-y_{1}$, then Q, R, U_{1} are collinear. So either $Q=R$ or $Q=-R$. If $Q=$ -R, then $P=U_{1}$ and this gives at most two points on \mathscr{C} '. If $Q=R$, then $P P_{0}$ is a tangent to \mathscr{C} at Q. Hence there are at most six choices for P and hence at most 12 such points on \mathscr{C}^{\prime}. Hence $2 \mathrm{~g}(\mathscr{D})-2 \leq 12+2=14$, whence $\mathrm{g}(\mathscr{D}) \leq 8$. Thus by the corollary to theorem 11.5,

$$
|\mathscr{D}| \geq q+1-16 \sqrt{q} .
$$

So, when $q+1-16 \sqrt{q} \geq 29$, we obtain the desired contradiction; this occurs for $q \geq 311$.

Case (c). This is similar to case (b). Here, among the functions on \mathscr{C}^{\prime}, one takes $A=y_{0}$.

Notes: (1) The result certainly holds for some but not all k with $\mathrm{q}<311$.
(2) A similar technique can be applied for q even. Here \mathscr{C} is taken in the form

$$
\left(y^{2}+x y\right) z=x^{3}+a_{1} x z^{2}+a_{0} z^{3} .
$$

Instead of θ as above, we define $\theta: \mathscr{C} \rightarrow K / C_{0}$ where $C_{o}=\{t \in K \mid T(t)=0\}$ and $T(t)=t+t^{2}+\ldots t^{q / 2}$; here C_{0} in the set of elements of category $(=$ trace $)$ zero. Take $P(x, y, 1) \theta=x C_{0}$. Then \mathscr{K} is complete for $q \geq 256$.

COROLLARY: In $P G(2, q)$ there exists a complete $k-a r c$ with $k=\frac{1}{2}(q+1-t)$ for every t satisfying 16.8 when either (a) q is ndd, $q \geq 311$, t is even; or (b) qis even, $q \geq 256$, t is odd.
18. k-ARCS IN PG(2,q).

Let \mathscr{K} be a complete $k-a r c$ in $P G(2, q)$; that is, \mathcal{K} has no three points collinear and is not contained in a $(k+1)$-arc. We define three constants $m(2, q), n(2, q), m^{\prime}(2, q)$.

$$
\begin{aligned}
& m(2, q)=\max k= \begin{cases}q+2, & q \text { even } \\
q+1, & q \text { odd },\end{cases} \\
& n(2, q)=\min k .
\end{aligned}
$$

If $m(2, q) \neq n(2, q)$,

$$
m^{\prime}(2, q)=\text { second largest } k ;
$$

if $m(2, q)=n(2, q)$, let $m^{\prime}(2, q)=m(2, q)$. So, if a k-arc has $k>m^{\prime}(2, q)$, then it is contained in an $m(2, q)-a r c$. For q odd, every $(q+1)$-arc is a conic. For q even, the $(q+2)$-arcs have been classified for q < 16 ; see [4], [6].

The value of $n(2, q)$ seems to be a difficult problem. By elementa ry considerations ([6] p.205),

$$
n(2, q) \geq \sim \sqrt{2 q} .
$$

Constructions have been given for complete k-arcswith k having the following values (up to an added constant):

$$
\begin{aligned}
& \frac{1}{2} q, \text { see }[6], \S 9.4 ; \\
& \frac{1}{3} q, \\
& {[1] ;}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} q \text {, } \\
& 2 q^{9 / 10}, \quad q \text { large, }|15| \text {; } \\
& \mathrm{cq} \quad, \quad c \leq \frac{1}{2}, \mathrm{q} \text { large [16]; }
\end{aligned}
$$

These examples all lie an rational curves, namely conics or singular cubics; to be precise the k-arcs of order $\frac{1}{2} q$ have one point off a conic. The examples of $\S 17$ are the only other ones known.

Conjecture: For each k such that

$$
\mathrm{n}(2, \mathrm{q}) \leq \mathrm{k} \leq \mathrm{m}^{\prime}(2, \mathrm{q}),
$$

these exists a complete $k-a r c$ in $P G(2, q)$.

In fact, although the conjecture is true for $q \leq 13$, it is probably more realistic to ask for the smallest value of q for which the conjecture is false.

In Table 2, we give m, m^{\prime} and n for $q \leq 13$.

q	2	3	4	5	7	8	9	11	13
m	4	4	6	6	8	10	10	12	14
$\mathrm{~m}^{\prime}$	4	4	6	6	6	6	8	10	12
n	4	4	6	6	6	6	6	7	8

Upper bounds for m'(2,q) are as follows:

$$
\begin{aligned}
& m^{\prime}(2, q) \leq q-\frac{1}{4} \sqrt{q}+\frac{25}{16}, q \text { odd, }[17] ; \\
& m^{\prime}(2, q) \leq q-\sqrt{q}+1, \quad q=2^{h},[6], \text { theorem } 10 \cdot 3 \cdot 3 . \\
& m^{\prime}(2, q)=q-\sqrt{q}+1, \quad q=2^{2 r},[2] .
\end{aligned}
$$

19. AN IMPROVEMENT ON THE BOUND FOR m' $(2, q)$ WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime $\mathrm{p} \geq 7$,

$$
m^{\prime}(2, p) \leq \frac{44}{45} p+\frac{8}{9} .
$$

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that, for q odd with $q \geq 7$, we have $m^{\prime}(2, q) \leq q-\frac{1}{4} \sqrt{q}+\frac{7}{4}$ and we follow the structure of this proof.

Let \mathscr{K} be a complete k-arc with $k>\frac{44}{45} p+\frac{8}{9}$. Through each point P of \mathscr{K} there are $\mathrm{t}=\mathrm{p}+2-\mathrm{k}$ unisecants. The kt unisecants of \mathscr{K} belong to an algebraic envelope $\Delta_{2 t}$ of class $2 t$, which has a simple component Γ_{n} with $n \leq 2 t$. For $t=1$, the envelope Δ_{2} is the dual of a conic, \mathscr{K} is a $(q+1)-\operatorname{arc}$ and so conic. When $t \geq 2$, four cases are d stinguished.
(i) Γ_{n} is a regular (rational) linear component.

Here Γ_{n} is a pencil with vertex Q not in \mathscr{K}. Then $\mathscr{K} \cup\{Q\}$ is a $(\mathrm{k}+1)-\operatorname{arc}$ and \mathscr{K} is not complete.
(ii) Γ_{n} is regular of class two.

Here Γ_{n} is the dual of a conic \mathscr{C}, and \mathscr{K} is contained in $\mathscr{C},[6]$ theorem 10.4.3.
(iii) Γ_{n} is irregular.

Suppose that Γ_{n} has M simple lines and d double lines, and let $\mathrm{N}=\mathrm{M}+\mathrm{d}$. Then, by $[6]$ lemma 10.1 .1 , it follows that $\mathrm{N} \leq \mathrm{n}^{2}$. Also by the definition of $\Delta_{2 t}$ and Γ_{n}, there are at least $\frac{1}{2} n$ distinct lines of Γ_{n} through P; so $N \geq \frac{1}{k} k n$. Therefore $k \leq 2 N / n \leq 2 n \leq 4 t=$
$=4(p+2-k)$. Thus $k \leq \frac{4}{5}(p+2)<\frac{44}{45} p+\frac{8}{9}$, a contradiction for $p \geq 5$.
(iv) Γ_{n} is regular with $n \geq 3$.

Either $\mathrm{n}=2 \mathrm{t} \leq \frac{1}{2} \mathrm{p}$ or $\mathrm{t}>\frac{1}{4} \mathrm{p}$. When $\mathrm{t}>\frac{1}{4} \mathrm{p}$, then $\mathrm{k}=\mathrm{p}+2-\mathrm{t}<\frac{3}{4} \mathrm{p}+2<\frac{44}{45} \mathrm{p}+\frac{8}{9}$ for $p \geq 5$.

When $\mathrm{n} \leq \frac{1}{2} \mathrm{p}$, then

$$
N \leq \frac{2 n}{5}\{5(n-2)+p\}
$$

for $n \geq 5$ by theorem 14.1, note (3); for $n \geq 3$ it follows from theorem 11.5 when we note that $n \leq \frac{1}{2} p$ implies $v_{i}=i$ by theorem 11.4 , corollary 1 (ii).

As in (iii), $N \geq \frac{1}{2} k n$. So

$$
\begin{aligned}
\frac{1}{2} \mathrm{kn} & \leq \mathrm{N} \leq \frac{2 \mathrm{n}}{5}\{5(\mathrm{n}-2)+\mathrm{p}\}, \\
\mathrm{k} & \leq \frac{4}{5}\{5(\mathrm{n}-2)+\mathrm{p}\}, \\
\mathrm{k} & \leq \frac{4}{5}\{5(2 \mathrm{t}-2)+\mathrm{p}\} .
\end{aligned}
$$

Substituting $\mathrm{t}=\mathrm{p}+2-\mathrm{k}$ gives

$$
\begin{aligned}
& k \leq \frac{4}{5}\{10(p+1-k)+p\} \\
& k \leq \frac{4}{45}(11 p+10)
\end{aligned}
$$

the required contradiction.
COROLLARY: For any prime $\mathrm{p} \geq 311$,

$$
\frac{1}{2}(p+[2 \sqrt{p}]) \leq m^{\prime}(2, p) \leq \frac{4}{45}(11 p+10)
$$

Notes: (1) $\frac{4}{45}(11 p+10)<p-\frac{1}{4} \sqrt{p}+\frac{25}{16}$ for $p \geq 47$.
(2) $\frac{4}{45}(11 p+10)<p-\sqrt{p}+1$ for $p \geq 2017$.
20. k-CAPS $\operatorname{IN} \operatorname{PG}(n, q), n \geq 3$.

A k-cap in $P G(n, q)$ is a set of k points no 3 collinear. Let $m_{2}(n, q)$ be the maximum value that k can attain. From §19, $m(2, q)=$ $=m_{2}(2, q)$. For $n \geq 3$, the only values known are as follows:

$$
\begin{aligned}
& m_{2}(3, q)=q^{2}+1, \quad q>2 ; \\
& m_{2}(d, 2)=2^{d} ; \\
& m_{2}(4,3)=20 ; \\
& m_{2}(5,3)=56 .
\end{aligned}
$$

See [8] for a survey on these and similar numbers. The sets corresponding to these values for $m_{2}(d, q)$ have been classified apart from $\left(q^{2}+1\right)$-caps for q even with $q \geq 16$.

As for the plane, let $m_{2}(n, q)$ be the size of the second largest complete k-cap. Then, from [9], chapter 18 ,

$$
m_{2}^{\prime}(3,2)=5 \quad, m_{2}^{\prime}(3,3)=8 .
$$

We now summarize the best known upper bounds for $m_{2}^{\prime}(n, q)$ and $m_{2}(n, q)$.
THEOREM 20.1: ([7]) For q odd with $q \geq 67$,

$$
m_{2}^{\prime}(3, q) \leq q^{2}-\frac{1}{4} q \sqrt{q}+2 q .
$$

THEOREM 20.2: ([10]) For q even with $q>2$,

$$
m_{2}^{\prime}(3, q) \leq q^{2}-\frac{1}{2} q-\frac{1}{2} \sqrt{q}+2 .
$$

This gives that $m_{2}^{\prime}(3,4) \leq 15$.
THEOREM 20.3: ([10]) $m_{2}^{\prime}(3,4)=14$.
In fact, a complete 14-cap in $P G(3,4)$ is projectively unique and is obtained as follows.

Let π be a $\operatorname{PG}(2,2)$ in $P G(3,4)$, let P be a point not in π, and let Π be a $P G(3,2)$ containing P and π. Each of the seven lines joining P to a point of π contains three points in π and two points nt in π. The 14 points on the lines through P not in Π form the desired cap.

THEOREM 20.4: ([7]) For q odd, $\mathrm{q} \geq 121, \mathrm{n} \geq 4$,

$$
m_{2}(n, q)<q^{n-1}-\frac{1}{4} q^{n-3 / 2}+3 q^{n-2} .
$$

THEOREM 20.5: ($[10]$) For even, $q \geq 4, n \geq 4$,

$$
m_{2}(n, q) \leq q^{n-1}-\frac{1}{2} q^{n-2}+\frac{5}{2} q^{n-3} .
$$

REFERENCES

[1] V.ABATANGELO, A class of complete $[(q+8) / 3]$-arcs of $P G(2, q)$; with $\mathrm{q}=2^{\mathrm{h}}$ and $\mathrm{h}(\geq 6)$ even, Ars Combin. 16(1983), 103-111.
[2] J.C.FISHER, J.W.P.HIRSCHFELD, and J.A.THAS, Complete arcs in planes of sequence order, Ann.Discrete Math. 30(1986), 243-250.
[3] W.FULTON, Algebraic curves, Benjamin, 1969.
[4] D.G.GLYNN, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial Mathematics X, Lecture Notes in Math. 1036, Springer, 1983, 217-229.
[5] R.HARTSHORNE, Algebraic geometry, Springer, 1977.
[6] J.W.P.HIRSCHFELD, Projective geometries over finite fields, Oxford, 1979.
[7] J.W.P.HIRSCHFELD, Caps in elliptic* quadrics, Ann. Discrete Math. 18 (1983), 449-466.
[8] J.W.P.HIRSCHFELD, Maximum sets in finite projective spaces, London Math.Soc. Lecture Note Series 82(1983), 55-76.
[9] J.W.P.HIRSCHELD, Finite projective spaces of three dimensions, Oxford, 1985.
[10] J.W.P.HIRSCHFELD and J.A.THAS, Linear independence in finite spaces. Geom. Dedicata, to appear.
[11] G.KORCHMAROS, New examples of complete k-arcs in PG(2,q), European J.Combin. 4(1983), 329-334.
[12] J,-P.SERRE, Nombres de points des courbes algébriques sur F_{q}, Seminaire de Théorie des Nombres de Boudeaux (1983) exposé no. 22 .
[13] J.-P.SERRE, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R.Acad.Sci. Paris Sér I 296(1983), 397-402.
[14] K.-O.STOHR and J.F.VOLOCH, Weierstass points and curves over finite fields. Proc. London Math.Soc. 52(1986), 1-19.
[15] T.SZONYI, Small complete arcs in Galois planes, Geom. Dedicata 18 (1985), 161-172.
[16] T.SZONYI, On the order of magnitude of k for complete k arcs in $P G(2, q)$, preprint.
[17] J.A.THAS, Complete arcs and algebraic curves in PG(2,q), J.Algebra, to appear.
[18] J.F.VOLOCH, Curves over finite fields, Ph.D.thesis, University of Cambridge, 1985.
[19] J.F.VOLOCH, On the completeness of certain plane arcs, European J.Combin, to appear.
[20] J.F.VOLOCH, Arcs in projective planes over prime fields, J.Geom., to appear.
[21] W.G.WATERHOUSE, Abelian varieties over finite fields, Ann.Sci. École Norm. Sup. 2(1969), 521-560.
[22] F.ZIRILLI, Su una classe di k-archi di un piano di Galois, Atti Acad. Naz.Lincei Rend. 54(1973), 393-397.

