ALGEBRAIC CURVES, ARCS, AND CAPS OVER FINITE FIELDS

J.W.P.HIRSCHFELD

Mathematics Division University of Sussex Falmer Brighton BN1 9QH INGHILTERRA

INTRODUCTION

These notes give an account of a series of lectures at the University of Lecce as well as two at the University of Bari, all during April 1986.

§§1-15 are based on the thesis [18], of J.-F.Voloch, apart from some background remarks and classical interpolations. They deal with the number of points on an algebraic curve over a finite field. The main results of the thesis are also contained in [14], §16 records some classical results on elliptic curves and §17, following Voloch [19], proves the existence of complete k-arcs for many values of k by taking half the points on an elliptic curve. §§18-19 discusses the values of n(2,q), the size of the smallest k-arc in PG(2,q), and m'(2,q), the size of the second largest complete k-arc in PG(2,q), the main result of §19 follows a proof of Segre using an improved bound for the number of points on a curve from §§11 and 14. Finally, §20 summarizes the best, known estimates for $m_2(d,q)$, the largest size of k-cap in PG(d,q).

2. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

Let \mathscr{C} be an algebraic curve defined over GF(q) of genus g, and let N₁ be the number of points, rational over GF(q), on a non-singular model of \mathscr{C} . Define N_q(g) = max N₁, where \mathscr{C} varies over all curves of genus g. We recall the following bounds.

For a summary of results on $N_{\mbox{\scriptsize q}}(g)$ and references, see [9] Appendix IV.

The estimates (i) and (ii) are good for $g \leq \frac{1}{2}(q-q^{1/2})$, but not for $g > \frac{1}{2}(q-q^{1/2})$.

One of the aims of these notes is to describe improvements to (i), (ii), (iii). First, it is elementary that (ii) is sometimes better than (i) and never worse.

Let $m = \lfloor 2q^{1/2} \rfloor$. Then $2q^{1/2} = m + \varepsilon$, where $0 \le \varepsilon \le 1$. So

$$[2gq^{1/2}] = [g(m+\varepsilon)] = [gm+g\varepsilon] = gm+[g\varepsilon].$$

- 3. THE DEDUCTION OF SERRE'S AND IHARA'S RESULTS FROM THE RIEMANN HYPOTHESIS.
 - (a) Serre's result

$$\mathscr{G}(\mathscr{G}) = \exp(\Sigma N_i x^1 / i)$$

= f(x)/{(1-x)(1-qx)},

where $f(x) = 1 + c_1 x + \ldots + q^g x^{2g} \in \mathbb{Z}[x]$ has inverse roots $\alpha_1, \ldots, \alpha_{2g}$ satisfying

(i) $\alpha_{i} \alpha_{2g-i} = c_{i}$, (ii) $|\alpha_{i}| = q^{1/2}$.

So $\alpha_i \bar{\alpha}_i = q$, whence $\alpha_{2g-i} = q/\alpha_i = \bar{\alpha}_i$ Thus, from the zeta function

$$N_{1} = q + 1 - \sum_{i=1}^{q} (\alpha_{i} + \bar{\alpha}_{i}).$$
 (3.1)

Since

$$\sum_{i=1}^{2g} \alpha_{i}^{k} = q^{k} + 1 - N_{k}, \qquad (3.2)$$

the elementary symmetric functions of the α_i are integers and the α_i are algebraic integers.

As above, let $m = \lfloor 2q^{1/2} \rfloor$ and let $x_i = m+1-\alpha_i - \overline{\alpha}_i$, $i=1,\ldots,g$. (1) $x_i > 0$

Let $\alpha_i = c + d\sqrt{-1}$, $\overline{\alpha}_i = c - d\sqrt{-1}$. Then $c^2 + d^2 = q$, whence $c \leq \sqrt{q}$. So $\alpha_i + \overline{\alpha}_i = 2c \leq 2\sqrt{q}$ and $[2\sqrt{q}] + 1 > \alpha_i + \overline{\alpha}_i$; thus $x_i > 0$.

(2) The x_i are conjugate algebraic integers

To show that the elementary symmetric functions of the x_i are integers, it suffices to show that $\sum_{i=1}^{g} x_i^r$ is an integer for r=1,...,g

or that $\Sigma(\alpha_i + \bar{\alpha}_i)^r$ is an integer. However,

$$\begin{split} & \stackrel{g}{1} (\alpha_{i} + \bar{\alpha}_{i})^{r} = \stackrel{g}{1} \alpha_{i}^{r} + (\stackrel{r}{1}) \stackrel{g}{1} \alpha_{i}^{r-1} \bar{\alpha}_{i} + \ldots + (\stackrel{r}{1}) \stackrel{g}{1} \alpha_{i}^{\bar{\alpha}_{i} - 1} + \stackrel{g}{1} \bar{\alpha}_{i}^{r} \\ & = \stackrel{2g}{1} \stackrel{g}{1} \alpha_{i}^{r} + (\stackrel{r}{1}) q \stackrel{2g}{1} \stackrel{\alpha_{i}^{r-2}}{} + (\stackrel{r}{2}) q^{2} \stackrel{2g}{1} \stackrel{r-4}{} + \ldots , \end{split}$$

which is an integer.

The classical inequality on arithmetic and geometric means gives

$$\frac{1}{g} \Sigma x_i \geq (\pi x_i)^{1/g} \geq 1$$

by (1) and (2). So $\Sigma x_i \ge g$, whence $\Sigma (\alpha_i + \overline{\alpha}_i) \le gm$. Applying the same argument with y_i for x_i with $y_i = m + 1 + \alpha_i + \overline{\alpha}_i$ gives $\Sigma (\alpha_i + \overline{\alpha}_i) \ge -gm$. Hence

$$|N_1 - (q+1)| \le gm.$$
 (3.3)

(b) Ihara's result

We use (3.1) and

$$N_{2} = q^{2} + 1 - \Sigma (\alpha_{i}^{2} + \bar{\alpha}_{i}^{2}). \qquad (3.4)$$

Since $\alpha_i^2 + \bar{\alpha_i}^2 = (\alpha_i + \bar{\alpha_i})^2 - 2q$, so

$$q+1-\Sigma(\alpha_{i}+\bar{\alpha}_{i}) = N_{1} \leq N_{2} = q^{2}+1+2qg-\Sigma(\alpha_{i}+\bar{\alpha}_{i})^{2}.$$

However, $g\Sigma(\alpha_i + \bar{\alpha}_i)^2 \ge \{\Sigma(\alpha_i + \bar{\alpha}_i)\}^2$. Thus

$$N_{1} \leq q^{2} + 1 + 2qg - g^{-1} \{\Sigma(\alpha_{i} + \bar{\alpha}_{i})\}^{2}$$
$$= q^{2} + 1 + 2qg - g^{-1}(N_{1} - q - 1)^{2}$$

and

$$N_1^2 - (2q+2-g)N_1 + (q+1)^2 - (q^2+1)g - 2qg^2 \le 0$$
,

from which the result follows.

For $g > \frac{1}{2}(q - \sqrt{q})$, Ihara's result is better than Serre's.

4. THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let \mathscr{C} be as in §2, but consider it as a curve over \bar{K} , the algebraic closure of K = GF(q). Also suppose that \mathscr{C} is embedded in the plane PG(2, \bar{K}) and let φ be the Frobenius map given by

$$P(x_{o}, x_{1}, x_{2})\varphi = P(x_{o}^{q}, x_{1}^{q}, x_{2}^{q})$$

where $P(x_0, x_1, x_2)$ is the point of the plane with coordinate vector (x_0, x_1, x_2) . Then

$$\mathscr{C} = V(F)$$

= {P(x₀, x₁, x₂) | F(x₀, x₁, x₂) = 0 }

for some form F in $K[X_0, X_1, X_2]$. Also $\mathscr{C}\varphi = \mathscr{C}$ and the points of \mathscr{C} rational over GF(q) are exactly the fixed points of φ on \mathscr{C} .

For any non-singular point $P=P(x_0, x_1, x_2)$ the tangent T_p at P is

$$T_{p} = V(\frac{\partial F}{\partial x_{o}} X_{o} + \frac{\partial F}{\partial x_{1}} X_{1} + \frac{\partial F}{\partial x_{2}} X_{2}) .$$

In affine coordinates,

$$T_{p} = V(\frac{\partial f}{\partial a}(x-a) + \frac{\partial f}{\partial b}(x-b))$$

where f(x,y) = F(x,y,1).

Instead of looking at fixed points of φ , let us look at the set of points such that $P\varphi \in T_p$. As $P \in T_p$, this set contains the GF(q)-rational points of \mathscr{C} . Let

$$h = (x^{q} - x)f_{x} + (y^{q} - y)f_{y}.$$

Then

$$h_{x} = (qx^{q-1}-1)f_{x} + (x^{q}-x)f_{xx} + (y^{q}-y)f_{yx}$$
$$= -f_{x} + (x^{q}-x)f_{xx} + (y^{q}-y)f_{yx}$$

and

$$h_y = -f_y + (x^q - x)f_{xy} + (y^q - y)f_{yy}.$$

So V(h) and V(f) have a common tangent at any GF(q)-rational point of \mathscr{C} that is non-singular. So, if N is the number of GF(q)-rational points of \mathscr{C} and the degree of f is d, then Bézout's theorem implies, when f is not a component of h, that

$$(d+q-1)d = deg h deg f$$

= sum of the intersection numbers at
the points of V(f) \cap V(h)
 $\geq 2N$.

Hence $N \leq \frac{1}{2}d(d+q-1)$.

Now, suppose that V(f) is a component of V(h), or equivalently that h=0 as a function an V(f). Therefore

$$(x^{q}-x)f_{x}/f_{y} + (y^{q}-y) = 0,$$

 $(x^{q}-x)\frac{dy}{dx} - (y^{q}-y) = 0.$

Differentiating gives

$$(x^{q}-x) \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} - \frac{d}{dx}(y^{q}-y) = 0$$

Remembering that $\frac{d}{dx} = \frac{\partial}{\partial x} + \frac{dy}{dx} \frac{\partial}{\partial y}$, we obtain that

$$(x^{q}-x) \frac{d^{2}y}{dx^{2}} = 0$$
$$\frac{d^{2}y}{dx^{2}} = 0.$$

Since $\frac{dy}{dx} = -f_x/f_y$, it follows that $\frac{d^2y}{dx^2} = -f_y^{-2} \{f_{xx}f_{y2}-2f_{xy}f_xf_y + f_{yy}f_{x2}\}.$

THEOREM 4.1: If $\frac{d^2y}{dx^2} \neq 0$, that is, \mathscr{C} is not all inflexions and q is odd, then $N \leq \frac{1}{2} d(d+q-1)$.

In fact $\frac{d^2y}{dx^2} = 0$ can only occur when \mathscr{C} is a line or the characteristic $p \leq d$. For example, when $f = x^{p^r+1} + y^{p^r+1}+1$, then \mathscr{C} is all inflexions. A particular case of this phenomenon is the Hermitian curve $\mathscr{U}_{2,q} = V(X_0^{\sqrt{q+1}} + X_0^{-1} + X_2^{\sqrt{q+1}})$ when q is a square.

Since every curve of genus 3 can be embedded in the plane as a non-singular quartic, we can see how theorem 4.1 compares with Serre's bound for $N_q(3)$ and its actual value.

q	3	5	7	9	11	13	17	19
2(q+3)	12	16	20	24	28	32	40	44
$q+1+3\left[2\sqrt{q}\right]$	13	18	23	28	30	35	42	44
N _q (3)	10	16	20	28	28	32	40	44

Thus, for q odd with $q \le 19$ and $q \ne 3$ or 9, the theorem gives the best possible result. A curve achieving $N_9(3)$ is $\mathscr{U}_{2,9}$.

5. WEIERSTRASS POINTS IN CHARACTERISTIC ZERO.

First consider the canonical curve \mathscr{C}^{2g-2} of genus $g \geq 3$ in PG(g-1,C). The <u>Weierstrass points</u>, W-points for short, are the points at which the osculating hyperplane has g coincident intersections. In this case, with w the number of W-points

$$w = g(g^2 - 1).$$

In any case,

 $_{1}$ 2g + 2 $\leq \dot{w} \leq g(g^{2}-1)$

with the lower bounded achieved only for hyperelliptic curves. A curve of genus g > 1 is <u>hyperelliptic</u> if it has a linear series $\gamma \frac{1}{2}$ (a 2-sheeted covering) on it; for example, a plane quartic with a double point. It has equation

$$y^2 = f(x)$$

with genus $g = \left[\frac{1}{2}(d-1)\right]$ where $d = \deg f$.

Consider the case g=3 of the canonical curve \mathscr{C}^4 , a non-singular plane quartic. The W-points are the 24 inflexions. We note that

- 7 -

in characteristic p > 0, there is different behaviour; for example, $\mathscr{U}_{2,q}$ has 28 <u>undulations</u> (points where the tangent has 4-point contact). When g=4, the curve $\mathscr{C}^6 = \mathscr{F}^3 \cap \mathscr{F}^2$, the intersection of a cubic and a quadric surface, has 60 <u>stalls</u> where the osculating plane meets the curve at four coincident points.

More generally, still with characteristic zero, if \mathscr{C} has genus $g \ge 1$ and $P \in \mathscr{C}$, there exist integers n_1, n_2, \ldots, n_g such that no function has pole divisor precisely $n_i P$. Also $\{n_1, n_2, \ldots, n_g\} = \{1, 2, \ldots, g\}$ for all but a finite number of points. We elaborate this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let $\[mathcal{C} A^n(K)\]$ be an irreducible non-singular algebraic curve defined over K, let I(%) c K[X₁,...,X_n] be the ideal of polynomials wich are zero at all points of $\[mathcal{C}\]$, let $\Gamma(\[mathcal{C}\]) = K = [X_1, ..., X_n]/I(\[mathcal{C}\])$; and K($\[mathcal{C}\])$ be the quotient field of $\Gamma(\[mathcal{C}\])$; then K($\[mathcal{C}\])$ is called the <u>function field</u> of $\[mathcal{C}\]$. Also, for P in $\[mathcal{C}\]$, let $0_p = \{f/g|f, ge\Gamma, g(P) \neq 0\}$, the <u>local ring</u> of $\[mathcal{C}\]$ at P. Then, by natural inclusions, K c $\Gamma(\[mathcal{C}\])$ c $K(\[mathcal{C}\])$. Also $0_p \setminus \{units\}$ $= M_p = \langle t \rangle$, the maximal ideal, and for any z in 0_p there exist a unique unit u and a unique non-negative integer m such that $z = ut^m$; write m=ord_p(z). Hence, if $GeK[X_1, ..., X_n]$ and g is the image of G in $\Gamma(\[mathcal{C}\])$ with $G(P) \neq 0$, define $ord_p(G)=ord_p(g)$. In particular, if $\[mathcal{C}\]$ is a plane curve and V(L) the tangent at P, then $ord_p(L)$ gives the multiplicity of contact of the tangent with $\[mathcal{C}\]$. For the extension of these definitions to the projective case, see Fulton [3], p.182. This is the situation we now consider.

A <u>divisor</u> D on \mathscr{C} is $D = \sum_{P \in \mathscr{C}} n_P P$, $n_P \in \mathbb{Z}$, with $n_P = 0$ for all but a finite number of points P; the <u>degree</u> of D is deg $D = \sum n_P$. Then D is <u>effective</u> if $n_P \ge 0$ for all P. For z in K(\mathscr{C}), define

> $div(z) = ord_{P}(z)P$ = $(z)_{0} - (z)_{\infty}$,

ALTERSITAT OF COL

where

$$(z)_{0} = \sum_{\text{ord}(z)>0} \text{ord}_{P}(z)P$$
, the divisor of zeros,

and

$$(z)_{\infty} = \sum_{\text{ord}(z) < 0} - \text{ord}_{p}(z)P$$
, the divisor of poles;

that is, div(z) is the difference of two effective divisors and deg div(z) = 0.

Given $D = \Sigma n_p P$, define

$$L(D) = \{f \in K(\mathscr{C}) | ord_p(f) \ge -n_p, \forall P\};$$

that is, poles of f are no worse than n_p . In other words, feL(D) if f=0 or if div(f) + D is effective.

The set L(D) is a vector space and its dimension is denoted l(D).

There is an important equivalence relation on the divisors given by $D \sim D'$ if there exists g in $K(\mathscr{C})$ such that D-D'=div(g).

7. THE CANONICAL SERIES

Let \mathscr{C} be an irreducible curve in $PG(2,\bar{K})$ where \bar{K} is the algebraic closure of K and let X be a non-singular model of \mathscr{C} with $\Psi: X \rightarrow \mathscr{C}$ birational. Points of X are <u>places</u> or <u>branches</u> of \mathscr{C} . A place Q is <u>centred</u> at P if $Q\Psi = P$. Let $r_Q = m_P(\mathscr{C})$, the multiplicity of \mathscr{C} at P, where \mathscr{C} has only ordinary singular points. If $\mathscr{C}'=V(G)$ is any other plane curve such that div(G)-E is effective, where $E = \sum_{Q \in X} (r_Q^{-1})Q$, then \mathscr{C}' is an <u>adjoint</u> of \mathscr{C} ; essentially, \mathscr{C}' passes m-1 times through any point of \mathscr{C} of multiplicity m. If deg $\mathscr{C}=d$ and deg $\mathscr{C}' = d-3$, then \mathscr{C}' is a <u>special adjoint</u> of \mathscr{C} . In this case, div(G) - E is a <u>canonical</u> divisor. The <u>canonical series</u>, consisting of all canonical divisors, is therefore cut out by all the special adjoints of \mathscr{C} . The series is a $\gamma \frac{g^{-1}}{2g^{-2}}$ of (projective) dimension g-1 and order 2g-2. For example,

$$\mathscr{C}^{6} = V(z^{2}xy(x-y)(x+y)+x^{6}+y^{6})$$

is a sextic with an ordinary quadruple point at P(0,0,1) and no other singularity. So

$$g = \frac{1}{2}(6-1)(6-2) - \frac{1}{2}4(4-1) = 4$$

The special adjoints are cubics with a triple point at P(0,0,1), that is triples of lines through the point. A special adjoint has equation V($(x-\lambda_1 y)(x-\lambda_2 y)(x-\lambda_3 y)$) and has freedom 3. It meets $\%^6$ in 6.3-4.3=6 points other than P(0,0,1). Hence the special adjoints cut out a γ_6^3 , as expected.

The Riemann-Roch theorem says that. if W is a canonical divisor

on X and D is any divisor, then

 $\ell(D) = \deg D + 1 - g + \ell(W-D).$

8. THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K} , and let $f : X \neq \mathscr{C}c$ PG(n, \bar{K}) be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that \mathscr{C} is not contained in a hyperplane. The <u>degree</u> d of \mathscr{C} is the number of points of intersection of \mathscr{C} with a generic hyperplane. For any hyperplane H, if n_p is the intersection multipl<u>i</u> city of H and \mathscr{C} at P, then

$$H \cdot \mathscr{C} = \sum_{\substack{P \in \mathscr{C}}} n_{p} P$$

is a <u>divisor</u> of degree $d = \Sigma n_p$. Also

$$\mathscr{D} = \{ H, \mathscr{C} | H \text{ a hyperplane} \}$$

is a <u>linear system</u>. In this case, $D \sim D'$ for any D, D' in \mathscr{D} . Hence \mathscr{D} is contained in the <u>complete</u> linear system $|D| = \{D'|D' \sim D\}$, where D is some element of \mathscr{D} .

A complete linear system defines an embedding f : X $\rightarrow \mathscr{C}$ given by

$$f(Q) = P(f_{Q}(Q), ..., f_{p}(Q))$$

where $\{f_0, \ldots, f_n\}$ is a basis of

 $L(D) = \{ge\bar{K}(X) | div(g) + D \ge 0\}$.

- 11 -

Given a linear system \mathscr{D} , the complete system containing \mathscr{D} has the same degree as \mathscr{D} and possibly larger dimension. Hence, although not necessary, it is simpler to consider complete linear systems, and this we do.

Let \mathscr{C} of degree d have associated complete linear system \mathscr{D} and let P be a fixed point of \mathscr{C} . Let \mathscr{D}_i be the set of hyperplanes passing through P with multiplicity at least i. Then

$$\mathcal{D} = \mathcal{D}_{0} \supset \mathcal{D}_{1} \supset \cdots \supset \mathcal{D}_{d} \supset \mathcal{D}_{d+1} = \emptyset.$$

Each \mathscr{D}_i is a projective space. If $\mathscr{D}_i \neq \mathscr{D}_{i+1}$, then \mathscr{D}_{i+1} has codimension one in \mathscr{D}_i . Such an i is a $(\mathscr{D}, \mathsf{P})$ -order. So the $(\mathscr{D}, \mathsf{P})$ -orders are j_0, \ldots, j_n , where

$$0 = j_0 < j_1 < j_2 < \dots < j_n \le d$$
.

Note that $j_1 = 1$ if and only if P is non singular.

For example, let & be a plane cubic. Then

$$(j_0, j_1, j_2) = \begin{cases} (0,1,2) & \text{if P is neither singular nor an inflexion,} \\ (0,1,3) & \text{if P is an inflexion,} \\ (0,2,3) & \text{if P is singular.} \end{cases}$$

Note that, as the points of $\mathscr C$ are viewed as branches, each branch has a unique tangent.

The Hasse derivative, satisfies the following properties:

(i)
$$D_{t}^{(i)}(\Sigma a_{j}t^{j}) = \Sigma a_{j}(_{i}^{j})t^{j-i};$$

(ii) $D_{t}^{(i)}(fg) = \int_{j=0}^{i} D_{t}^{(j)}f \cdot D_{t}^{(i-j)}g;$

(iii)
$$D_t^{(i)} D_t^{(j)} = \binom{i+j}{i} D_t^{(i+j)}$$

The unique hyperplane with intersection multiplicity ${\rm j}_{\rm n}$ at P is the osculating hyperplane ${\rm H}_{\rm P}$ and has equation

det
$$\begin{bmatrix} x_{0} & \cdots & x_{n} \\ (j_{0}) & (j_{0}) & 0 \\ D & f_{0} & D & f_{n} \\ \vdots (j_{n-1}) & \vdots (j_{n-1}) \\ D & f_{0} & D & f_{n} \end{bmatrix} = 0$$

For example, if \mathscr{C} is the twisted cubic in PG(3,K),

$$(f_0, f_1, f_2, f_3) = (1, t, t^2, t^3),$$

 $(j_0, j_1, j_2, j_3) = (0, 1, 2, 3).$

The osculating hyperplane at $P(1,t,t^2,t^3)$ is

det
$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & t & t^2 & t^3 \\ 0 & 1 & 2t & 3t^2 \\ 0 & 0 & 1 & 3t \end{bmatrix} = 0;$$

that is,

.

$$t^{3}x_{0} - 3t^{2}x_{1} + 3tx_{2} - x_{3} = 0.$$

The point P on \mathscr{C} is a <u>Weierstrass point</u>, W-point for-short, if $(j_0, j_1, \dots, j_n) \neq (0, 1, \dots, n)$. Since \mathscr{D} is complete, the Riemann-Roch theorem gives that, if $d \ge 2g-2$, then

(i) n = d-g; (ii) dim $\mathcal{D}_i = d-g-i$ for $i \leq d - 2g + 1$; (iii) $j_i = i$ for $i \leq d - 2g$.

Let $L_i = 0$ hyperplanes meeting \mathscr{C} at P with $n_P > j_i + 1$. Then L_i is dual to \mathscr{D}_i and

$$L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{n-1}$$
.

Also $L_0 = \{P\}$, the set L_1 is the tangent line at P, and L_{n-1} is the osculating hyperplane at P.

The point P is a \mathscr{D} -osculation point if $j_n > n$, that is, there exists a hyperplane H such that $n_p > n$.

The integers j_i are characterized by the following result.

THEOREM 8.1 : (i) If j_0, \ldots, j_{i-1} are known, then j_i is the smallest integer r such that $D^{(r)}f(Q)$ is linearly independent of $\{D^{(j_0)}f(Q), \ldots, D^{(j_{i-1})}f(Q)\}$; the latter set spans L_{i-1} .

(ii) If $0 \leq r_0 < \ldots < r_s$ are integers such that $D^{(r_0)} f(Q), \ldots, D^{(r_s)} f(Q)$ are linearly independent, then $j_i \leq r_i$.

9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

$$W = \det \begin{bmatrix} \begin{pmatrix} \varepsilon_{0} \\ D & f_{0} \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ 0 & f_{0} \\ \vdots & \vdots \\ 0 & f_{0} \\ \vdots & \vdots \\ 0 & f_{n} \end{bmatrix}$$

Here the derivations are taken with respect to a separating variable t (dt is the image of t under the map d : $\bar{K}(\mathscr{C}) \neq \Omega_{\bar{K}}$; see Fulton [3] p. 203).

The ε_i are required to satisfy the conditions:

(i) $0 = \varepsilon_0 < \varepsilon_1 < \ldots < \varepsilon_n;$

(ii) $W \neq 0;$

(iii) given $\varepsilon_0, \dots, \varepsilon_{i-1}$, then ε_i is chosen as small as possible such that $D = \begin{pmatrix} \varepsilon_0 \\ 0 \end{pmatrix} f_{1}, \dots, p = 1 \end{pmatrix} f$ are linearly independent.

Then

(iv) the
$$\varepsilon_i$$
 are the (\mathcal{D}, P)-orders at a general point P;
(v) $\varepsilon_i < r_i$ for any $r_0 < \dots < r_n$ with det $(D_{j}) \neq 0$;
(vi) $\varepsilon_i < j_i$ for any P in \mathscr{C} ;
(vii) the ε_i are called the \mathcal{D} -orders of \mathscr{C} .

The divisor

$$R = div(W) + \left(\sum_{O}^{n} \varepsilon_{i}\right) div(dt) + (n+1) \sum_{p} e_{p}P,$$

where dt is the differential of t and $e_p = -\min_i \operatorname{ord}_P f_i$, is the ramification divisor of \mathscr{D} and depends only on \mathscr{D} . Putting R = $\Sigma r_p P$, we have

$$\deg R = \Sigma r_{p} = (2g-2)\Sigma\varepsilon_{i} + (n+1)d.$$

THEOREM 9.1: $r_p \ge \sum_{i \ge 0}^{n} (j_i - \epsilon_i)$ with equality if and only if det $C \neq 0 \pmod{p}$, where $C = (c_{is})$ and $c_{is} = (\frac{j_i}{\epsilon_s})$.

COROLLARY: (i) R is effective.

(ii) $r_p = 0$ if and only if $j_i = \varepsilon_i$ for $0 \le i \le n$.

The points P where $r_p=0$ are called \mathscr{D} -<u>ordinary</u>; the others are called \mathscr{D} -<u>Weierstrass</u>. The number r_p is the <u>weight</u> of P. When \mathscr{D} is the canonical series, the \mathscr{D} -Weierstrass points are simply the <u>Weierstrass points</u>. This coincides with the classical definition. When $\varepsilon_i = i$, $0 \le i \le n$, then \mathscr{D} is <u>classical</u>. Next, the estimate $\varepsilon_i \le j_i$ is improved.

THEOREM 9.2: (i) Let P on \mathscr{C} have (\mathscr{D}, P) -orders j_0, \ldots, j_n and suppose that det C' $\neq 0 \pmod{p}$, where C'= (c'_is) and c'_is = $\binom{j_i}{r_s}$, then $D^{(r_0)}f, \ldots, D^{(r_n)}f$ are linearly independent and $\varepsilon_i \leq r_i$. (ii) If $i_i^{II}s (j_i - j_s)/(i - s) \neq 0 \pmod{p}$, then \mathscr{D} is classical and $r_p = \sum_{i=0}^{p} (j_i - i)$ (iii) If p > d or p=0, then $r_p = \sum_{0}^{n} (j_i-i)$ for all P in \mathscr{C} .

(iv) If ε is a \mathscr{D} -order and μ is an integer with $\binom{\varepsilon}{\mu} \neq 0 \pmod{p}$, then μ is also a \mathscr{D} -order.

(v) If ε is a \mathscr{D} -order and ε <p,then 0,1,..., ε -1 are also \mathscr{D} -orders.

Entering into this theorem is the classical result of Lucas.

LEMMA 9.3: Let $A=a_0+a_1p+\ldots+a_mp^m$ and $B=b_0+b_1p+\ldots+b_np^m$ be p-adic expansions of A and B with respect to the prime p; that is, $0 \le a_i$, $b_i \le p-1$. Then

(i)
$$\binom{A}{B} \equiv \binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}}\dots\binom{a_{m}}{b_{m}} \pmod{p};$$

(ii) () $\neq 0 \pmod{p}$ if and only if $a_i \ge b_i$, all i;

Proof:
$$(1+x)^{A} = (1+x)^{\sum a_{i}p^{1}}$$

= $(1+x)^{a_{0}}(1+x^{p})^{a_{1}} \dots (1+x^{p^{m}})^{a_{m}}$.

Now, the result follows by comparing the coefficient of \mathbf{x}^{B} on both sides.

10. CONSTRUCTION OF SOME LINEAR SYSTEMS

LEMMA 10.1: Let |D| be a complete, non-special linear system and let j_0, \ldots, j_n be the (|D|, P)-orders, where n=dim|D|. Then the (|D+P|, P)-orders are 0, $j_0 + 1, \ldots, j_n + 1$.

THEOREM 10.2: If |D| is a complete, non-special, classical, linear system and |D'| is a complete, base-point-free, linear system, then |D+D'| is classical.

Let Pe% and let j_0, \ldots, j_n be the (\mathcal{D}, P) -orders for \mathcal{D} canonical. Then $j_0+1=\alpha_1, \ldots, j_{g-1}+1=\alpha_g$ are the <u>Weierstrass gaps</u> at P; that is, there does not exist f in $\bar{K}(\mathscr{C})$, regular outside P, such that $\operatorname{ord}_P(f)=-\alpha_i$.

THEOREM 10.3: Let Pe \mathscr{C} and let $\alpha_1, \ldots, \alpha_g$ be the Weierstrass gap sequence at P. If the linear system $\mathscr{D} = |dP|$ for some positive integer d, then the (\mathscr{D}, P) -orders are $\{0, 1, \ldots, d\} \setminus \{d - \alpha_i \mid \alpha_i \leq d\}$.

THEOREM 10.4: With P and $\alpha_1, \ldots, \alpha_g$ as above, let V be a canonical divisor, s ≥ 2 an integer, and $\mathscr{D} = |V+sP|$. Then the (\mathscr{D}, P) -orders are

 $j_{i} = i$ for i=0,1,...,s-2, $x+s-2 = s-1+\alpha_i$ for i = 1,...,g.

THEOREM 10.5: Let P in \mathscr{C} be an ordinary point for the canonical linear system |V| and assume that |V| is classical. Then, for any n such that $0 \leq n \leq g-1$, the linear system $\mathscr{D} = |V-nP|$ is a classical $\gamma \frac{g-1-n}{2g-2-n}$ without base points, and P is \mathscr{D} -ordinary.

An important result an linear series is also worth noting.

THEOREM 10.6: The generic curve of genus g has a γ_d^n if and only if

$$d \ge \frac{n}{n+1} g+n$$
.

11. THE ESSENTIAL CONSTRUCTION

Given the curve \mathscr{C} with its linear system of hyperplanes and with N the number of its GF(q)-rational points, consider the set $\mathscr{F} = \{P | P \varphi c H_p\}$; compare §4 for the plane. So $P \epsilon \mathscr{F} \iff$

$$\det \begin{bmatrix} f_{0}^{q} & \dots & f_{n}^{q} \\ D_{t}^{(j_{0})} & D_{t}^{(j_{0})} f_{n} \\ \vdots & \vdots \\ D_{t}^{(j_{n-1})} f_{0} & \dots & D_{t}^{(j_{n-1})} f_{n} \end{bmatrix} = 0$$

To give an outline first, take the classical case in which $j_i = i$. So, let

 $W' = det \begin{bmatrix} f_0^q & \cdots & f_n^q \\ f_0 & \cdots & f_n \\ \vdots & \vdots \\ \vdots & \vdots \\ D^{(n-1)} f_0 \cdots & D^{(n-1)} f_n \end{bmatrix}$

If W' \neq 0, then W is a function of degree

$$n(n-1)(g-1) + d(q+n)$$

and the rational points are n-fold zeros of W'. Hence

$$N \leq (n-1)(g-1) + d(q+n)/n$$
.

Since \mathscr{D} is complete, d < n+g; hence

$$N \leq (n-1)(g-1) + (n+g)(q+n)/n$$

= q + 1 + g(n + q/n).

This has minimum value for $n = \sqrt{q}$, in which case

$$N \leq q + 1 + 2g\sqrt{q}$$

More carefully, let

$$W_{t}(v,f) = det \begin{bmatrix} f_{0}^{q} & \dots & f_{n}^{q} \\ D_{t}^{(v_{0})}f_{0} & \dots & D_{t}^{(v_{0})}f_{n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ D_{t}^{(v_{n-1})}f_{0} & D_{t}^{(v_{n-1})}f_{n} \end{bmatrix}$$

where t is a separating variable on \mathscr{C} and $v = (v_0, \dots, v_{n-1})$ with $0 \le v_0 < \dots < v_{n-1}$.

THEOREM 11.1: (i) There exist integers v_0, \ldots, v_{n-1} , such that $0 \le v_0 \le \ldots \le v_{n-1}$ and $W_t(v, f) \ne 0$.

(ii) If v_0, \ldots, v_{n-1} are chosen successively so that v_i is as small as possible to ensure the linear independence of $D^{(v_0)}f, \ldots, D^{(v_i)}f$, then there exists an integer n_0 with $0 \le n_0 \le n$ such that

$$v_i = \varepsilon_i \text{ for } 1 < n_o,$$

 $v_i = \varepsilon_{i+1} \text{ for } i \ge n_o$

where $\varepsilon_0, \ldots, \varepsilon_n$ are the \mathscr{D} -orders; that is

$$(v_0, \ldots, v_{n-1}) = (\varepsilon_0, \ldots, \varepsilon_{n_0-1}, \varepsilon_{n_0+1}, \ldots, \varepsilon_n).$$

(iii) If $v'=(v'_0,\ldots,v'_{n-1})$ and $W_t(v',f) \neq 0$, then $v_i \leq v'_i$ for all i.

The integers v_i are the <u>Frobenius</u> \mathscr{D} -<u>orders</u>. They and S depend only on \mathscr{D} , where

> $S = \operatorname{div}(W_t(v, f)) + \operatorname{div}(\operatorname{dt}) \Sigma v_i + (q+n)E,$ $\operatorname{deg} S = (2g-2) \Sigma v_i + (q+n)d.$

THEOREM 11.2: If $v \leq q$ is a Frobenius \mathscr{D} -order, then each nonnegative integer u such that $\binom{v}{u} \neq 0 \pmod{p}$ is a Frobenius \mathscr{D} -order. In particular, if $v_i < p$, then $v_i = j$ for $j \leq i$.

THEOREM 11.3: (i) If P is a GF(q)-rational point of &, then

$$m_{p}(S) \geq \sum_{i \leq 1}^{n} (j_{i} - v_{i-1}),$$

with equality if and only if det $C \not\equiv 0 \pmod{p}$, where

$$C = (c_{ir})$$
 and $c_{ir} = ({j_i \choose v_{r-1}})$, $i, r=1, ..., n$.

(ii) If $P \in \mathscr{C}$ but not GF(q)-rational, then

$$m_p(S) \ge \sum_{i=1}^{n-1} (j_i - v_i).$$

If det C' \equiv 0 (mod p), the inequality is strict, where

$$C' = (c'_{ir})$$
 and $c'_{ir} = ({j_{i-1} \atop v_{r-1}})$, i,r=1,...,n

THEOREM 11.4: Let P be a GF(q)-rational point of \mathscr{C} . If $0 \leq m_0 \leq \dots \leq m_{n-1}$ and det C'' $\neq 0 \pmod{p}$, then $v_i \leq m_i$ for all i, where C'' = (c''_{ir}) and

$$c''_{ir} = ({j_{i}-j_{t} \over m_{r-1}})$$
, $i, r = 1, ..., n$.

COROLLARY 1: (i) If P is a GF(q)-rational point of \mathscr{C} , then $v_i \leq j_{i+1}-j_i$ for i=0,...,n-1 and $m_p(S) \geq nj_1$.

(ii) If (a) $1 \le i \le r \le n \quad (j_r - j_i)/(r - i) \ne 0 \pmod{p}$, or (b) $j_i \ne j_r \pmod{p}$ for $i \ne r$, or (c) $p \ge d$, then $v_i = i$ for $i = 0, \dots, n-1$ and $m_p(S) = n + \frac{n}{i \ge 1}(j_i - i)$.

COROLLARY 2: If $v_i \neq \varepsilon_i$ for some i < n, then each GF(q)-rational

point of \mathscr{C} a \mathscr{D} -Weierstrass point.

COROLLARY 3: If \mathscr{C} has some GF(q)-rational point, then $v_{i\leq i+d-n}$, all i. If also \mathscr{D} is complete, then $v_{i}=i$ for i < d - 2g.

THEOREM 11.5: (THE MAIN RESULT) Let X be an irreducible, nonsingular, projective, algebraic curve of genus g defined over K = GF(q) with N rational points. If there exists on X a linear system γ_d^n without base points, and with order sequence $\varepsilon_0, \ldots, \varepsilon_n$ and Frobenius order sequence v_0, \ldots, v_{n-1} , then

$$N \leq \frac{1}{n} \{(2g-2) \quad \sum_{0}^{n-1} v_i + (q+n)d\}.$$

If also $v_i = \varepsilon_i$ for i < n, then

$$\varepsilon_n N + \Sigma_p a_p + \Sigma_p b_p \le (2g-2) \sum_{\substack{\Sigma \\ 0}}^{n-1} \varepsilon_i + (q+n)d,$$

where P is a K-rational point of X, where P'eX but not K-rational and where

$$a_p = i \frac{\Sigma}{\epsilon_n} (j_i - \epsilon_i), \quad b_p = i \frac{\Sigma}{\epsilon_n} (j_i - \epsilon_i)$$

with j_0, \ldots, j_n the (\mathcal{D}, P)-orders.

COROLLARY: $|N-(q+1)| \leq 2g\sqrt{q}$.

THEOREM 11.6: If X is non-singular, $p \ge g \ge 3$ with $q = p^h$, and the canonical system is classical, then

$$N \le 2q + g(g-1)$$
.

Notes:(1) If $p \ge 2g-1$, then the canonical system is classical.

(2) This gives a better bound than $S_g = q+1 + g[2\sqrt{q}]$ when $|\sqrt{q}-g| < \sqrt{g+1}$.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with $\frac{1}{2}(p+3) \ge g \ge 3$, then

$$N \leq (\frac{2g-3}{g-2})q + g(q-2).$$

Note : This is better than S_g when

$$|\sqrt{q} - \frac{g(g-2)}{g-1}| < \{(g-2)(g^2-g-1)\}^{\frac{1}{2}}/(g-1).$$

THEOREM 11.8: If X is non-singular with classical canonical system and a K-rational point, then

$$N < (g-n-2)(g-1)+(2g-n-2)(q+g-n-1)(g-n-1)^{-1}$$

for $0 \leq n \leq g - 1$.

12. ELLIPTIC CURVES

The number of elements of a γ_d^n on a curve of genus g with n+1 coincident points, that is \mathscr{D} -Weierstrass points, is (n+1)(d+ng-n). When g=1, this number is d(n+1). If \mathscr{D} consists of all curves of degree r and \mathscr{C} is a plane non-singular cubic, then $n=\frac{1}{2}r(r+3)$, d = 3r. The condition for a γ_d^n to exist is, from Theorem 10.6, that $d \ge n/(n+1)+n$. So this only allows γ_3^2 and γ_6^5 , whence d=n+1 and the number of \mathscr{D} -Weierstrass points is $(n+1)^2$. From the Riemann-Roch theorem, as every series is non-special on \mathscr{C} , a complete

series γ_d^n satisfies d = n+1.

For n=2, the \mathscr{D} -Weierstrass points are the 9 inflexions. For n=5, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics = points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If p \uparrow (n+1), the \mathscr{D} -W-points have multiplicity one .

(ii) If $p^k|(n+1)$, $p^{k+1}f(n+1)$ with $k \ge 1$, then one of the following holds:

(a) $\mathscr C$ is ordinary and there are $(n+1)^2/p^k \mathscr D$ -W-points with multiplicity p^k ;

(b) \mathscr{C} is supersingular and there are $(n+1)^2/p^{2k}$ \mathscr{D} -W-points with multiplicity p^{2k} .

THEOREM 12.2: If 'C is elliptic with origin 0 and \mathscr{D} is a complete linear system on C, then

(i) 𝒴 is classical;

(ii) \mathscr{D} is Frobenius classical except perhaps when $\mathscr{D} = |(\sqrt{q}+1)0|$; (iii) $|(\sqrt{q}+1)0|$ is Frobenius classical if and only if N< $(\sqrt{q}+1)^2$.

13. HYPERELLIPTIC CURVES

As in §5, if $p \neq 2$, then \mathscr{C} has homogeneous equation $y^2 z^{d-2} = z^d f(x/z)$ with $g = \left[\frac{1}{2}(d-1)\right]$. Let g > 1 and let P_1, \ldots, P_n be the ramification points of the double cover (= double points of the γ_2^1 on \mathscr{C}); then n=2(g+1) from the formula beginning §12. When d is even, they are the points with y=0; when d is odd, they are these plus P(0,1,0). Let n be the number of K-rational P₁.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_2^1 = |D|$ and n, n_0 as above. If there is a positive integer n_1 such that $|(n_1+g)D|$ is Frobenius classical, then

$$|N-(q+1)| \leq g(2n_1+g)+(2n_1+g)^{-1}\{g(q-n_0)-g^3-g\}.$$

Note: If $p \ge 2(n_1+g)$, then the hypothesis is fulfilled.

COROLLARY: Let $p \ge 5$ with $p=c^2+1$ or $p=c^2+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with g>1 over GF(p). Then

$$|N-(p+1)| \leq g[2\sqrt{p}] - 1.$$

14. PLANE CURVES

Let \mathscr{C} be a non-singular, plane curve of degree d over K=GF(q); then $g = \frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as z=0.

Let x,y be affine coordinates. The monomials $x^{i}y^{j}$, $i, j \ge 0$, $i+j \le m$ span L(mD) and are linearly independent for m < d. Hence dim $|mD| = \frac{1}{2}m(m+3)$ for m < d. Also, mD is a special divisor for m \le d-3. Thus |mD| is cut out by all curves of degree m.

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with m \leq d - 3 such that |mD| is Frobenius classical, then

$$N \leq \frac{1}{2}(m^2 + 3m - 2)(g - 1) + 2d(m + 3)^{-1}\{q + \frac{1}{2}m(m + 3)\}.$$

Proof. Put (i) $\frac{1}{2}m(m+3)$ for n, (ii) $\frac{1}{2}(d-1)(d-2)$ for g, (iii) md for d, (iv) i for v_i, in theorem 11.5.

Notes: (1) When $m \le p/d$, then |mD| is Frobeinius classical. (2) For m=1, we have that $4 \le d \le p$ implies that

$$N \leq \frac{1}{2}d(d+q-1)$$
,

as in theorem 4.1.

(3)For m=2, we have that $5 \le d \le \frac{1}{2}p$ implies that $N \le \frac{2d}{5} \{5(d-2)+q\},$

which is required in theorem 19.1.

Let f(x,y) be homogeneous of degree d with f(x,1) having distinct roots in \overline{K} . A <u>Thue curve</u> is given by

$$\tilde{c}_{d}$$
 : f(x,y) = z^{d}.

It is non-singular.

THEOREM 14.2: Let D be a divisor cut out by a line on \mathcal{C}_d . If m is a positive integer such that |mD| is Frobenius classical, then

$$N \leq (n-1)(g-1) + \frac{1}{n} \{md(q+n) - d A_m - d_0 B_m\}$$

where n is the dimension of |mD|;

$$n = \begin{cases} \frac{1}{2}m(m+3) \text{ for } m \leq d - 3 \\ \\ dm - g \text{ for } m > d - 3 \end{cases}$$

$$g = \frac{1}{2}(d-1)(d-2),$$

$$d_{0} = \text{number of K-rational roots of } f(x,1),$$

$$A_{m} = \begin{cases} \frac{1}{24}m(m-1)\{4(d-m-1)(m+4)+(m-2)(m-5)\} \text{ for } m \leq d-3 \\ \frac{1}{24}(d-1)(d-2)(d-3)(d+4) & \text{ for } m > d-3, \end{cases}$$

$$B_{m} = \begin{cases} dm - \frac{1}{2}m(m+3) & \text{ for } m \leq d-3 \\ g & \text{ for } m > d-3. \end{cases}$$

Note: When $m \leq p/d$, then |mD| is Frobenius classical.

A Fermat curve is a special case of a Thue curve given by

$$\mathcal{F}_{d}$$
: ax^d + by^d = z^d

with a, b $\in K \setminus \{0\}$.

THEOREM 14.3: For \mathscr{F}_d with the same conditions as above,

$$N \leq (n-1)(g-1) + \frac{1}{n} \{md(q+n) - 3d A_m - d_1 B_m\}$$

with n,g, A_m , B_m as above, but d_1 is the number of points of \mathscr{F}_d with xyz = 0.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1, we give the value of $N_q(g)$ or the best, known bound for $g \le 5$ and $q \le 49$ arising from results of Serre [12],[13] and the preceding sections. Also included in the table is the bound $S_g = q+1+g[2\sqrt{q}]$; see §2.

TABLE 1

The maximum number points on an algebraic curve

q	[2√q]	N (1)	N _q (2) S.	N (3)	s ₃	N (4)	с с	N (5) 5
Ч		N _q (1)	"q (2	2	N _q (3)	3	N _q (4)	³ 4	N _q (5	⁵ 5
2	2	5	6	7	7	9	8	11	9	13
3	3	7	8	10	10	13	12	16	<u>≤</u> 15	19
4	4	9	10	13	14	17	15	21	<u><</u> 18	25
5	4	10	12	14	16	18	18	22	<u><</u> 22	26
7	5	13	7	18	20	23	24-25	28	<u><</u> 29	33
8	5	14	18	19	24	24		29	<u><</u> 32	34
9	6	16	20	22	28	28	26-30	34	<u>≤</u> 36	40
11	б	18	24	24	28	30	32-34	36	<u><</u> 40	42
13	7	21	26	28	32	35	36-38	42	<u><</u> 4 5	49
16	8	25	33	33	38	41		49		57
17	8	26	32	34	40	42	<u><</u> 46	50	<u><</u> 54	58
19	8	28	36	36	44	44	<u><</u> 50	52	<u><</u> 58	60
23	9	33	42	42	<u>≤</u> 48	51	<u><</u> 58	60	<u><</u> 66	69
25	10	36	46	46	56	56	66	66		76
27	10	38	48	48		5 8		68		78
29	10	40	50	50		60		70	<u><</u> 78	80
31	11	43	52	54		65	<u><</u> 74	76	<u><</u> 82	87
32	11	44	53	5 5		66		77		88
37	12	50	60	62		74		86	<u><</u> 94	98
41	13	54	66	68		81		94	<u>≤</u> 102	107
43	13	57	68	70		83		96	<u><</u> 106	109
47	13	61	74	74		87	1	00		113
49	14	64	78	78	92	92		106		120

16. ELLIPTIC CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves over an arbitrary field K offers an appealing mixture of geometric and algebraic arguments. Let \mathscr{C} be a non-singular cubic in PG(2,q). For the projective classification when K = GF(q), see [6] Chapter 11. Although \mathscr{C} may have no inflexion, up to isomorphism it may be assumed to have one, 0.

THEOREM 16.1: If \mathscr{C}' , \mathscr{C}'' are cubic curves in PG(2,K) such that the divisors \mathscr{C} . $\mathscr{C}' = {\begin{array}{*{20}c} 9\\ i=1 \end{array}} {\begin{array}{*{20}c} P\\ i=1 \end{array}} {\begin{array}{*{20}c} P\\ i=1 \end{array}} and <math>\mathscr{C} \cdot \mathscr{C}'' = {\begin{array}{*{20}c} 8\\ i=1 \end{array}} {\begin{array}{*{20}c} P\\ i=1 \end{array}} {\begin{array}{*{20}c} P\\ i=1 \end{array}} + {\begin{array}{*{20}c} P\\ i=1 \end{array}} +$

Proof. (Outline) Through P_1, \ldots, P_8 there is a pencil \mathscr{F} of cubic curves to which \mathscr{C} , \mathscr{C}' , \mathscr{C}'' belong. Any curve of \mathscr{F} has the form $V(F+\lambda G)$ and so contains $V(F) \cap V(G)$. By Bézout's theorem $|V(F) \cap V(G)| = 9$. Hence $Q = P_0$.

For a detailed proof, see [3], Chapter 5.

Theorem 16.1 is known as the theorem of the <u>nine associated points</u>. It has numerous corollaries of which we give a variety before the important theorem 16.7.

THEOREM 16.2: Any two inflexions of & are collinear with a third.

Proof. Let P_1, P_2 be inflexions of \mathscr{C} with corresponding tangents l_1, l_2 . Let $l = P_1P_2$ meet \mathscr{C} again at P_3 , and let l_3 be the tangent at P_3 meeting \mathscr{C} again at Q. Then

Hence

By the previous theorem, $Q = P_3$; so P_3 is an inflexion.

THEOREM 16.3. If P_1 and Q_1 are any two points of \mathscr{C} , the cross-ratio of the four tangents through P_1 is the same as the cross-ratio of the four tangents through Q_1 .

Proof. Let P_1Q_1 meet & again at R_1 . Let r be a tangent to through R_1 with point of contact $R_2=R_3$. Let $P_1 P_2 P_3$ be any line through P_1 with P_2, P_3 on \mathscr{C} . Let R_2P_2 meet \mathscr{C} again at Q_2 and let R_3P_3 meet \mathscr{C} again at Q_3 . We use the previous theorem to show that Q_1, Q_2, Q_3 are collinear.

Write $l_i = P_i R_i Q_i$, i=1,2,3; let $p=P_1 P_2 P_3$, $r=R_1 R_2$, $q=Q_1 Q_2 S$ with S the third point of Q on \mathscr{C} .

Then
$$\mathscr{C.l}_{1}\mathfrak{l}_{2}\mathfrak{l}_{3} = \frac{3}{i\Xi_{1}}(P_{i}+Q_{i}+R_{i})$$

 $\mathscr{C.} \text{ prq} = \frac{3}{i\Xi_{1}}(P_{i}+R_{i}) + Q_{1}+Q_{2}+S.$

Again by theorem 16.1, $S = Q_3$. When P_2 and P_3 coincide, so do Q_2 and Q_3 . So there is an algebraic bijection τ from the pencil \mathscr{F} through P_1 and the pencil G through Q_1 in which the tangents correspond. Hence τ is projective and the cross-ratios of the tangents are equal.

- 31 -

THEOREM 16.4. (Pascal's Theorem)

If $P_1 Q_2 P_3 Q_1 P_2 Q_3$ is a hexagon inscribed in a conic \mathscr{P} , then the intersections of opposite sides, that is R_1, R_2, R_3 , are collinear.

Proof. The two sets of three lines

 $\mathsf{P}_1\mathsf{Q}_2(\mathsf{P}_3\mathsf{Q}_1)(\mathsf{P}_2\mathsf{Q}_3) \quad \text{and} \quad (\mathsf{Q}_1\mathsf{P}_2)(\mathsf{Q}_3\mathsf{P}_1)(\mathsf{Q}_2\mathsf{P}_3)$

are cubics through the nine points P_1, Q_1, R_1 , i=1,2,3; there is an irreducible cubic \mathscr{C} in the pencil they determine. Also in the pencil is the cubic consisting of \mathscr{P} and the line R_3R_2 . So, by theorem 16.1, this cubic contains the ninth point R_1 , which cannot lie on \mathscr{P} . So $R_3R_2R_1$ is a line.

THEOREM 16.5: Let $\ell_1, \ell_2, \ell_3, \ell_4$ be the sides of a complete quadrinate quadrinate and let C_i be the circumcircle of the triangle obtained by deleting ℓ_i . Then $C_1 \cap C_2 \cap C_3 \cap C_4 = \{P\}$.

Proof.

There is a pencil of cubics through the vertices of the quadrilateral and the two circular points at infinity. The four cubics $C_i + l_i$, i=1,2,3,4, contain these eight points and therefore the ninth associated point P. As each l_i contains three of the eight initial points, it does not contain P. Hence P lies on each C_i .

Now we show that an elliptic curve \mathscr{C} is an abelian group. As above we take 0 as an inflexion.

Definition: For P,Q on \mathscr{C} , let $\mathscr{C}.PQ=P+Q+R$ and let $\mathscr{C}.OR=O+R+S$; define S = P+Q.

LEMMA 16.6: (i) On &, the points O,P,-P are collinear.

(ii) P,Q,R are collinear on $\mathscr C$ if and only if P+Q+R=O. THEOREM 16.7: Under the additive operation, $\mathscr C$ is an abelian group.

Proof. The only non-trivial property to verify is the associative law.

Apart from \mathscr{C} , consider the two cubics consisting of three lines given by the rows and columns of the array

$$\begin{array}{ccccc}
P_{1} & P_{2} & -P_{1} - P_{2} \\
P_{2} + P_{3} & P_{2} - P_{3} & 0 \\
X & P_{3} & P_{1} + P_{2}
\end{array}$$

Again, by theorem 16.1, X lies on both these cubics. So, $X = -P_1 - (P_2 + P_3) = - (P_1 + P_2) - P_3;$ hence, if Y is the third point of \mathscr{C} on OX, then

$$Y = P_1 + (P_2 + P_3) = (P_1 + P_2) + P_3.$$

Note: \mathscr{C} has been drawn as $y^2 = (x-a)(x-b)(x-c)$ with a<b<c, but the point of inflexion natural to this picture is at infinity.

THEOREM 16.8: (Waterhouse [21]). For any integer N=q+1-t with $|t| \leq 2\sqrt{q}$, there exists an elliptic cubic in PG(2,q), q= p^h, with precisely N rational points if and only if one of the following conditions on t and q is satisfied:

(i)	(t,p) = 1	
(ii)	t = 0	h odd or p≢1 (mod 4)
(iii)	$t = \pm \sqrt{q}$	h even and $p \not\equiv 1 \pmod{3}$
(iv)	$t = \pm 2\sqrt{q}$	h even
(v)	$t = \pm \sqrt{2q}$	h odd and $p = 2$
(vi)	$t = \pm \sqrt{3q}$	h odd and $p = 3$
COROLLA	$RY: N_{q}(1) = \begin{cases} q + \left[2\sqrt{q}\right] \\ h \text{ is odd} \\ q+1+\left[2\sqrt{q}\right] \end{cases}$] if p divides [2,⁄q], d and h <u>></u> 3; otherwise.

С

- 35 -

17. k-ARCS ON ELLIPTIC CURVES

As in §16, the curve \mathscr{C} is a non-singular cubic in PG(2,q) with inflexion 0.

THEOREM 17.1: (Zirilli [22]) If $|\mathscr{C}| = 2k$, then there exists a k-arc K on \mathscr{C} .

Proof. Since \mathscr{C} is an abelian group, the fundamental theorem says that \mathscr{C} is a direct product of cyclic groups of prime power order. By taking a subgroup of order 2^{r-1} in a component of order 2^{r} , we obtain a subgroup G of \mathscr{C} of index 2. Let K = $\mathscr{C} \setminus G$. Let $P_1, P_2 \in K$. Then $-P_1 \in K$ and $P_2 = -P_1 + Q$ for some Q in G. Hence $P_1 + P_2 = Q$ and $P_1 + P_2 - Q = 0$. Since -Q is in G, no three points of K are collinear.

The remainder of §17 follows Voloch [19].

The object is now to show that $\mathscr K$ can be chosen to be complete. First we construct $\mathscr K$ in a different way.

Let $U_0 = P(1,0,0)$, $U_1 = P(0,1,0)$, $U_2 = P(0,0,1)$. Also, with K = GF(q), let $K_0 = GF(q) \setminus \{0\}$ and $K_0^2 = \{t^2 | t \in K_0\}$.

Now, let \mathscr{C} in PG(2,q), q odd, have equation

$$y^{2}z = x^{3} + a_{2}x^{2}z + a_{1}xz^{2} + a_{0}z^{3}$$
.

Also suppose it is non-singular with 2k points. The point U_1 is an inflexion and we take this as the zero of \mathscr{C} as an abelian group. Since $|\mathscr{C}|$ is even, so \mathscr{C} has an element of order 2, which necessarily is a point of contact of a tangent through U_1 . Choose the tangent as x=0 and the point of contact as U_2 . Thus $a_0=0$ and \mathscr{C} has equation

$$y^2 z = x^3 + a_2 x^2 z + a_1 x z^2$$
. (17.1)

Define

 $\Theta : \mathscr{C} \rightarrow K_0 / K_0^2$ by

$$U_1^{\Theta} = K_0^2$$
; $U_2^{\Theta} = a_1 K_0^2$, $P(x,y,1)^{\Theta} = x K_0^2$ for $x \neq 0$.

Write $K_0/K_0^2 = \{1, v | v^2 = 1\}$.

LEMMA 17.2: Θ is a homomorphism.

Proof. If P = P(x,y,1), then -P=P(x,-y,1).

So $P \Theta = (-P)\Theta$, this also holds for U_1 and U_2 . Hence, if $P_1 + P_2 + P_3 = 0$, then $P_1 + P_2 = -P_3$ and $(P_1 + P_2)\Theta = (-P_3)\Theta = P_3\Theta = 1/(P_3\Theta)$. If it is shown that $(P_1\Theta)(P_2\Theta)(P_3\Theta)=1$, then $(P_1 + P_2)\Theta = (P_1\Theta)(P_2\Theta)$.

Let $P_i = P(x_i, y_i, 1)$, i=1,2,3. Since $P_1+P_2+P_3=0$, so P_1, P_2, P_3 are collinear, whence there exist m and c in K such that $y_i=mx_i+c$, i=1,2,3. So

$$(mx+c)^{2} - (x^{3}+a_{2}x^{2}+a_{1}x) = (x_{1}-x)(x_{2}-x)(x_{3}-x).$$

Thus $x_1 x_2 x_3 = c^2$ and so $(P_1 \Theta)(P_2 \Theta)(P_3 \Theta) = 1$.

If $(P_1, P_2) = (U_1, P_2)$, then $(P_1 + P_2)\Theta = P_2\Theta = (P_1\Theta)(P_2\Theta)$. If $(P_1, P_2) = (P_1, U_2)$ and $P_1 = P(x_1, y_1, 1)$, then $P_1 + U_2 = P(x_2, y_2, 1)$ with $x_1x_2 = a_1$.

Hence $(P_1+U_2)\Theta = x_2=a_1/x_1$ = $x_1^2(a_1/x_1) = x_1a_1 = (P_1\Theta)(U_2\Theta).$

So the homomorphism is established in all cases.

LEMMA 17.3: Θ is surjective for $q \ge 7$.

Proof. Since $P(bx^2, y, 1)\Theta = bx^2 = b$, it suffices to find a point Q on $\mathscr{C}' = V(F(bx^2, y, z))$ where $\mathscr{C} = V(F(x, y, z))$. So \mathscr{C}' has equation

$$y^{2}z^{4} = (bx^{2})^{3} + a_{2}(bx^{2})^{2}z^{2} + a_{1}(bx^{2})z^{4}.$$

However, we require Q not on V(xz). But V(z) $\cap \mathscr{C}' = \{U_1\}$ and V(x) $\cap \mathscr{C}' = \{U_1, U_2\}$. If we put y = tx, we see that \mathscr{C}' is also elliptic and so has at least $(\sqrt{q}-1)^2$ points. Since $(\sqrt{q}-1)^2 > 2$ for $q \ge 7$, there exists the required point Q.

LEMMA 17.4: 🗶 = & \ker0 is a k-arc.

Proof. Let G = ker θ . Then, from the previous two lemmas, G<C with [C: G] = 2. Then, if PeG, P θ = 1; if PeK, P θ = ν . Suppose P₁,P₂,P₃ in \mathscr{K} are collinear. So P₁+P₂+P₃ = 0, whence (P₁+P₂+P₃) θ =0 θ . So (P₁ θ)(P₂ θ)(P₃ θ) = 1, whence ν^{3} =1, whence ν = 1, a contradiction.

This lemma just repeats lemma 17.1 using the homomorphism Θ . THEOREM 17.5: \mathscr{K} is complete for q \geq 311.

Proof. Let $P_0 \in PG(2,q) \setminus \mathcal{K}$. It must be shown that $\mathcal{K} \cup \{P_0\}$ is not a (k+1)-arc. There are three cases: (a) $P_0 \in \mathcal{C} \setminus \mathcal{K}$, (b) $P_0 = P(x_0, y_0, 1)$, (c) $P_0 = P(1, y_0, 0)$.

Case (a). There are at most four tangents through P_0 with point of contact Q in \mathcal{K} . Since $k = \frac{1}{2}|\mathscr{C}| > \frac{1}{2}(\sqrt{q}-1)^2 > 4$, there exists Q in \mathcal{K} which is not such a point of contact. So $2Q \neq -P_0$ and $Q \neq -(P_0+Q)$. Also $-(P_0+Q) \in \mathcal{K}$, as otherwise $Q \in G = \mathscr{C} \setminus \mathcal{K}$. So P_0, Q , $-(P_0+Q)$ are distinct collinear points of $\mathcal{K} \cup \{P_0\}$. Case (b). Let \mathscr{C}' be the elliptic curve with affine equation

$$y^{2} = v^{3}x^{4} + v^{2}a_{2}x^{2} + va_{1} . \qquad (17.2)$$

Define the following functions on "":

$$U = vx^{2}, \quad Z = xy, \quad A = (y_{0}-Z)/(x_{0}-U),$$

$$B = A^{2}-a_{2}, \quad C = 2AZ-a_{1}-2A^{2}U,$$

$$D = (U-B)^{2} + 4(C+BU - U^{2}).$$

Then there exists a double cover

$$\Psi : \mathcal{D} \rightarrow \mathscr{C}'$$

defined by $W^2 = D$; that is, for any point P(x,y,1) of \mathscr{C}' , there are two points P(x,y,W,1) of \mathscr{D} . Now, let P(x,y,W,1) be a rational point of \mathscr{D} . Then, from the equation for \mathscr{C}' ,

$$x^{2}y^{2} = v^{3}x^{6} + v^{2}a_{2}x^{4} + va_{1}x^{2}$$
,

whence

$$Z^{2} = U^{3} + a_{2}U^{2} + a_{1}U . \qquad (17.3)$$

Hence

(1) $P = P(U,Z,1) \in \mathcal{K};$

(2) PP_0 has equation y-Z = A(x-U);

(3) $\text{PP}_{_{O}}$ meets $\mathscr C$ is two points other than P whose x-coordinates satisfy

$$x^{2} - (B-U)x - (C+BU-U^{2}) = 0 \qquad (17.4)$$

The last follows by substitution from (2) in (17.1), for we have

$$\{ Z+A(x-U) \}^2 = x^3 + a_2 x^2 + a_1 x.$$

- 40 -

Then, from (17.3),

$$(U^{3} + a_{2}U^{2} + a_{1}U) - (x^{3} + a_{2}x^{2} + a_{1}x)$$

+ 2ZA(x-U) + A²(x-U)² = 0.

Cancelling x-U gives (17.4).

Now, let $\mathscr{C} \cap PP_{\Omega} = \{P,Q,R\}$. The discriminant of (17.4) is

$$(B-U)^{2} + 4(C+BU-U^{2}) = D = W^{2}$$
.

So Q and R are rational points of \mathscr{C} . Since P,Q,R are collinear (P Θ)(Q Θ)(R Θ) = 1. As Pe \mathscr{K} , so P Θ = v, whence (Q Θ)(R Θ)=v. So one of Q a nd R, say Q, is in \mathscr{K} . Hence, if P \neq Q, there are three collinear points P,P₀,Q of $\mathscr{K} \cup \{P_0\}$.

it remains to examine the condition that $P\neq Q$. There are at most six tangents to \mathscr{C} through $P_O([6] p.252)$. So, if P=Q or P=R, there are at most six choices for P, hence 12 choices for (x,y)and 24 choices for P(x,y,W,1) on \mathscr{D} . As $|\mathscr{C}' \cap V(x)| \le 2$ and $|\mathscr{C} \cap V(z)| = 0$, so $|\mathscr{D} \cap V(x)| \le 4$ and $|\mathscr{D} \cap V(z)| = 0$. So we require that \mathscr{D} has at least 24+4+1 = 29 rational points.

By the Hurwitz formula ([5] p.301 or [3] p.215),

$$2g(\mathcal{D}) - 2 = 2 \{ 2g(\mathcal{C}') - 2 \} + \deg E$$
 (17.5)
= deg E.

Here, E is the ramification divisor (cf. §9) and

deg E = # points of ramification

- = # points with D = 0
- = # points such that Q and R have the same x-coordinate.

If $Q = P(x_1, y_1, 1)$ and $R = P(x_1, y_2, 1)$, then $y_2=\pm y_1$; if $y_2 = -y_1$, then Q, R, U_1 are collinear. So either Q=R or Q=-R. If Q = -R, then P = U_1 and this gives at most two points on \mathscr{C}' . If Q=R, then PP₀ is a tangent to \mathscr{C} at Q. Hence there are at most six choices for P and hence at most 12 such points on \mathscr{C}' . Hence $2g(\mathscr{D}) -2 \leq 12 + 2 = 14$, whence $g(\mathscr{D}) \leq 8$. Thus by the corollary to theorem 11.5,

$$|\mathcal{D}| > q+1 - 16\sqrt{q}$$
.

So, when $q+1-16\sqrt{q} \ge 29$, we obtain the desired contradiction; this occurs for $q \ge 311$.

Case (c). This is similar to case (b). Here, among the functions on \mathscr{C}' , one takes $A = y_0$.

Notes: (1) The result certainly holds for some but not all k with q < 311.

(2) A similar technique can be applied for q even. Here $\ensuremath{\mathscr{C}}$ is taken in the form

$$(y^{2}+xy)z = x^{3}+a_{1}xz^{2}+a_{0}z^{3}$$
.

Instead of Θ as above, we define Θ : $\mathscr{C} \to K/C_{O}$ where $C_{O} = \{t \in K | T(t) = 0\}$ and $T(t) = t + t^{2} + ... t^{q/2}$; here C_{O} in the set of elements of category (= trace) zero. Take $P(x, y, 1)\Theta = xC_{O}$. Then \mathscr{K} is complete for $q \ge 256$. COROLLARY: In PG(2,q) there exists a complete k-arc with $k=\frac{1}{2}(q+1-t)$ for every t satisfying 16.8 when either (a) q is odd, $q \ge 311$, t is even; or (b) q is even, $q \ge 256$, t is odd.

18. k-ARCS IN PG(2,q).

Let \mathscr{K} be a complete k-arc in PG(2,q); that is, \mathscr{K} has no three points collinear and is not contained in a (k+1)-arc. We define three constants m(2,q), n(2,q), m'(2,q).

 $m(2,q) = \max k = \begin{cases} q+2, q even \\ q+1, q odd, \end{cases}$

 $n(2,q) = \min k$.

If $m(2,q) \neq n(2,q)$, .

m'(2,q) = second largest k;

if m(2,q) = n(2,q), let m'(2,q) = m(2,q). So, if a k-arc has k > m'(2,q), then it is contained in an m(2,q)-arc. For q odd, every (q+1)-arc is a conic. For q even, the (q+2)-arcs have been classified for $q \le 16$; see [4], [6].

The value of n(2,q) seems to be a difficult problem. By element<u>a</u> ry considerations ([6] p.205).

 $n(2,q) > \sqrt{2q}$.

Constructions have been given for complete k-arcs with k having the following values (up to an added constant):

 $\frac{1}{2}q$, see [6], §9.4; $\frac{1}{3}q$, [1]; $\frac{1}{4}q, \qquad [11]$ $2q^{9/10}, \qquad q \text{ large, } |15];$ $cq , \qquad c \leq \frac{1}{2}, q \text{ large } [16];$

These examples all lie an rational curves, namely conics or singular cubics; to be precise the k-arcs of order $\frac{1}{2}q$ have one point off a conic. The examples of §17 are the only other ones known.

- 43 -

Conjecture: For each k such that

 $n(2,q) \leq k \leq m'(2,q),$

these exists a complete k-arc in PG(2,q).

In fact, although the conjecture is true for $q \leq 13$, it is probably more realistic to ask for the smallest value of q for which the conjecture is false.

In Table 2, we give m, m' and n for $q \leq 13$.

q	2	3	4.	5	7	8	9	11	13
m	4	4	6	6	8	10	10	12	14
m'	4	4	6	6	6	6	8	10	12
n	4	4	6	6	6	6	6	7	8

Upper bounds for m'(2,q) are as follows:

$$m'(2,q) \leq q - \frac{1}{4}\sqrt{q} + \frac{25}{16}, q \text{ odd}, [17];$$

$$m'(2,q) \leq q - \sqrt{q} + 1, q = 2^{h}, [6], \text{ theorem 10.3.3.}$$

$$m'(2,q) = q - \sqrt{q} + 1, q = 2^{2r}, [2].$$

19. AN IMPROVEMENT ON THE BOUND FOR m'(2,q) WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime $p \ge 7$,

$$m'(2,p) \leq \frac{44}{45}p + \frac{8}{9}.$$

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that, for q odd with $q \ge 7$, we have $m'(2,q) \le q - \frac{1}{4}\sqrt{q} + \frac{7}{4}$ and we follow the structure of this proof.

Let \mathscr{K} be a complete k-arc with $k > \frac{44}{45}p + \frac{8}{9}$. Through each point P of \mathscr{K} there are t = p+2-k unisecants. The kt unisecants of \mathscr{K} belong to an algebraic envelope Δ_{2t} of class 2t, which has a simple component Γ_n with $n \leq 2t$. For t=1, the envelope Δ_2 is the dual of a conic, \mathscr{K} is a (q+1)-arc and so a conic. When $t \geq 2$, four cases are d stinguished.

(i) Γ_n is a regular (rational) linear component.

Here Γ_n is a pencil with vertex Q not in \mathcal{K} . Then $\mathcal{K} \cup \{Q\}$ is a (k+1)-arc and \mathcal{K} is not complete.

(ii) Γ_n is regular of class two.

Here Γ_n is the dual of a conic $\mathscr C$, and $\mathscr K$ is contained in $\mathscr C$, [6] theorem 10.4.3.

(iii) Γ_n is irregular.

Suppose that Γ_n has M simple lines and d double lines, and let N=M+d. Then, by [6] lemma 10.1.1, it follows that N $\leq n^2$. Also by the definition of Δ_{2t} and Γ_n , there are at least $\frac{1}{2}n$ distinct lines of Γ_n through P; so N $\geq \frac{1}{k}$ kn. Therefore $k \leq 2N/n \leq 2n \leq 4t = 1$

= 4(p+2-k). Thus
$$k \leq \frac{4}{5}(p+2) < \frac{44}{45}p + \frac{8}{9}$$
, a contradiction for $p \geq 5$.

(iv) Γ_n is regular with $n \ge 3$.

Either n=2t $\leq \frac{1}{2}p$ or t $\geq \frac{1}{4}p$. When t $\geq \frac{1}{4}p$, then k=p+2-t $\leq \frac{3}{4}p+2 \leq \frac{44}{45}p+\frac{8}{9}$ for p \geq 5.

When $n \leq \frac{1}{2}p$, then

$$N \leq \frac{2n}{5} \{5(n-2)+p\}$$

for $n \ge 5$ by theorem 14.1, note (3); for $n \ge 3$ it follows from theorem 11.5 when we note that $n \le \frac{1}{2}p$ implies $v_i = i$ by theorem 11.4, corollary 1 (ii).

As in (iii),
$$N \ge \frac{1}{2}kn$$
. So
 $\frac{1}{2}kn \le N \le \frac{2n}{5}\{5(n-2) + p\}$,
 $k \le \frac{4}{5}\{5(n-2) + p\}$,
 $k \le \frac{4}{5}\{5(2t-2) + p\}$.

Substituting t = p+2-k gives

$$k \leq \frac{4}{5} \{10(p+1-k)+p\},\$$

$$k \leq \frac{4}{45} (11p + 10),$$

the required contradiction.

COROLLARY: For any prime $p \ge 311$,

$$\frac{1}{2}(p+[2\sqrt{p}]) \le m'(2,p) \le \frac{4}{45} (11p+10).$$

Notes: (1)
$$\frac{4}{45}$$
 (11p+10) \frac{1}{4}\sqrt{p} + $\frac{25}{16}$ for p > 47.
(2) $\frac{4}{45}$ (11p+10) \sqrt{p}+1 for p > 2017.

20. k-CAPS IN PG(n,q), $n \ge 3$.

A k-cap in PG(n,q) is a set of k points no 3 collinear. Let $m_2(n,q)$ be the maximum value that k can attain. From §19, m(2,q)= = $m_2(2,q)$. For $n \ge 3$, the only values known are as follows:

$$m_2(3,q) = q^2 + 1, \qquad q > 2;$$

 $m_2(d,2) = 2^d;$
 $m_2(4,3) = 20;$
 $m_2(5,3) = 56.$

See [8] for a survey on these and similar numbers. The sets corresponding to these values for $m_2(d,q)$ have been classified apart from(q^2+1)-caps for q even with q ≥ 16 .

As for the plane, let $m_2(n,q)$ be the size of the second largest complete k-cap. Then, from [9], chapter 18,

$$m'_{2}(3,2) = 5$$
, $m'_{2}(3,3) = 8$.

We now summarize the best known upper bounds for $m'_2(n,q)$ and $m'_2(n,q)$.

THEOREM 20.1: ([7]) For q odd with $q \ge 67$,

$$m'_{2}(3,q) \leq q^{2} - \frac{1}{4}q\sqrt{q} + 2q.$$

THEOREM 20.2: ([10]) For q even with q > 2,

$$m'_2(3,q) \leq q^2 - \frac{1}{2}q - \frac{1}{2}\sqrt{q} + 2.$$

This gives that $m'_2(3,4) \leq 15$.

THEOREM 20.3: $([10]) m'_2(3,4) = 14$.

In fact, a complete 14-cap in PG(3,4) is projectively unique and is obtained as follows.

Let π be a PG(2,2) in PG(3,4), let P be a point not in π , and let Π be a PG(3,2) containing P and π . Each of the seven lines joining P to a point of π contains three points in π and two points not in Π . The 14 points on the lines through P not in Π form the desired cap.

THEOREM 20.4: ([7]) For q odd, q \geq 121, n \geq 4,

$$\begin{split} m_2(n,q) < q^{n-1} - \frac{1}{4}q^{n-3/2} + 3q^{n-2}. \\ \text{THEOREM 20.5:} ([10]) \text{ For even, } q \ge 4, \quad n \ge 4, \\ m_2(n,q) \le q^{n-1} - \frac{1}{2}q^{n-2} + \frac{5}{2}q^{n-3}. \end{split}$$

REFERENCES

- [1] V.ABATANGELO, A class of complete [(q+8)/3]-arcs of PG(2,q); with $q=2^{h}$ and $h(\geq 6)$ even, Ars Combin. 16(1983), 103-111.
- [2] J.C.FISHER, J.W.P.HIRSCHFELD, and J.A.THAS, Complete arcs in planes of sequence order, Ann.Discrete Math. 30(1986), 243-250.
- [3] W.FULTON, Algebraic curves, Benjamin, 1969.
- [4] D.G.GLYNN, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial Mathematics X, Lecture Notes in Math. 1036, Springer, 1983, 217-229.
- [5] R.HARTSHORNE, Algebraic geometry, Springer, 1977.
- [6] J.W.P.HIRSCHFELD, Projective geometries over finite fields, Oxford, 1979.
- [7] J.W.P.HIRSCHFELD, Caps in elliptic quadrics, Ann. Discrete Math. 18 (1983), 449-466.
- [8] J.W.P.HIRSCHFELD, Maximum sets in finite projective spaces, London Math.Soc. Lecture Note Series 82(1983), 55-76.
- [9] J.W.P.HIRSCHELD, Finite projective spaces of three dimensions, Oxford, 1985.
- [10] J.W.P.HIRSCHFELD and J.A.THAS, Linear independence in finite spaces. Geom. Dedicata, to appear.
- [11] G.KORCHMAROS, New examples of complete k-arcs in PG(2,q), European J.Combin. 4(1983), 329-334.

- [12] J.-P.SERRE, Nombres de points des courbes algébriques sur F_q, Seminaire de Théorie des Nombres de Boudeaux (1983) exposé no.22.
- [13] J.-P.SERRE, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R.Acad.Sci. Paris Sér I 296(1983), 397-402.
- [14] K.-O.STOHR and J.F.VOLOCH, Weierstass points and curves over finite fields. Proc. London Math.Soc. 52(1986), 1-19.
- [15] T.SZONYI, Small complete arcs in Galois planes, Geom. Dedicata 18 (1985), 161-172.
- [16] T.SZONYI, On the order of magnitude of k for complete karcs in PG(2,q), preprint.
- [17] J.A.THAS, Complete arcs and algebraic curves in PG(2,q), J.Algebra, to appear.
- [18] J.F.VOLOCH, Curves over finite fields, Ph.D.thesis, University of Cambridge, 1985.
- [19] J.F.VOLOCH, On the completeness of certain plane arcs, European J.Combin, to appear.
- [20] J.F.VOLOCH, Arcs in projective planes over prime fields, J.Geom., to appear.
- [21] W.G.WATERHOUSE, Abelian varieties over finite fields, Ann.Sci. École Norm. Sup. 2(1969), 521-560.
- [22] F.ZIRILLI, Su una classe di k-archi di un piano di Galois, Atti Acad. Naz.Lincei Rend. 54(1973), 393-397.