812 research outputs found

    Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae

    Get PDF
    Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced

    Interaction of reed and acoustic resonator in clarinetlike systems

    Full text link
    Sound emergence in clarinetlike instruments is investigated in terms of instability of the static regime. Various models of reed-bore coupling are considered, from the pioneering work of Wilson and Beavers ["Operating modes of the clarinet", J. Acoust. Soc. Am. 56, 653--658 (1974)] to more recent modeling including viscothermal bore losses and vena contracta at the reed inlet. The pressure threshold above which these models may oscillate as well as the frequency of oscillation at threshold are calculated. In addition to Wilson and Beavers' previous conclusions concerning the role of the reed damping in the selection of the register the instrument will play on, the influence of the reed motion induced flow is also emphasized, particularly its effect on playing frequencies, contributing to reduce discrepancies between Wilson and Beavers' experimental results and theory, despite discrepancies still remain concerning the pressure threshold. Finally, analytical approximations of the oscillating solution based on Fourier series expansion are obtained in the vicinity of the threshold of oscillation. This allows to emphasize the conditions which determine the nature of the bifurcation (direct or inverse) through which the note may emerge, with therefore important consequences on the musical playing performances

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Sonic boom and drag evaluation of supersonic jet concepts

    Get PDF
    This paper evaluates three different class supersonic airliners (Concorde, Cranfield E-5, and NASA QueSST X-plane) in a multidisciplinary design analysis optimization (MDAO) environment in terms of their sonic boom intensities and aerodynamic performance. The aerodynamic analysis and sonic boom prediction methods are key to this research. The panel method PANAIR is integrated to perform automated aerodynamic analysis. The drag coefficient is corrected by the Harris wave drag formula and form factor method. For sonic boom prediction, the near-field pressure is predicted through the Whitham F-function method. The F-function is decomposed to the F-function due to volume and the F-function due to lift to see their individual effect on sonic boom. The near-field signature propagates in a stratified windy atmosphere using the waveform parameter method. The aerodynamic results are compared with experimental data and the sonic boom prediction results are validated by the NASA PCBoom program. Through the evaluation, we find a direct link between the wave drag and the first derivative of the volume distribution. The sonic boom intensity is influenced by the lift distribution and the volume change rate. The study helps to study the feasibility of low-boom and low-drag supersonic airliners

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    Condensation in stochastic mass transport models: beyond the zero-range process

    Get PDF
    We consider an extension of the zero-range process to the case where the hop rate depends on the state of both departure and arrival sites. We recover the misanthrope and the target process as special cases for which the probability of the steady state factorizes over sites. We discuss conditions which lead to the condensation of particles and show that although two different hop rates can lead to the same steady state, they do so with sharply contrasting dynamics. The first case resembles the dynamics of the zero-range process, whereas the second case, in which the hop rate increases with the occupation number of both sites, is similar to instantaneous gelation models. This new "explosive" condensation reveals surprisingly rich behaviour, in which the process of condensate's formation goes through a series of collisions between clusters of particles moving through the system at increasing speed. We perform a detailed numerical and analytical study of the dynamics of condensation: we find the speed of the moving clusters, their scattering amplitude, and their growth time. We finally show that the time to reach steady state decreases with the size of the system.Comment: 31 pages, 14 figures, submitted to J. Phys.

    Condensation in models with factorized and pair-factorized stationary states

    Get PDF
    Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc.) becomes spatially localised. We review two popular stochastic models of hopping particles that lead to condensation and whose stationary states assume a factorized form: the zero-range process and the misanthrope process, and their various modifications. We also introduce a new model - a misanthrope process with parallel dynamics - that exhibits condensation and has a pair-factorized stationary state.Comment: 15 pages, 2 figures submitted to J. Stat. Mec

    Associating Facial Expressions and Upper-Body Gestures with Learning Tasks for Enhancing Intelligent Tutoring Systems

    Get PDF
    Learning involves a substantial amount of cognitive, social and emotional states. Therefore, recognizing and understanding these states in the context of learning is key in designing informed interventions and addressing the needs of the individual student to provide personalized education. In this paper, we explore the automatic detection of learner’s nonverbal behaviors involving hand-over-face gestures, head and eye movements and emotions via facial expressions during learning. The proposed computer vision-based behavior monitoring method uses a low-cost webcam and can easily be integrated with modern tutoring technologies. We investigate these behaviors in-depth over time in a classroom session of 40 minutes involving reading and problem-solving exercises. The exercises in the sessions are divided into three categories: an easy, medium and difficult topic within the context of undergraduate computer science. We found that there is a significant increase in head and eye movements as time progresses, as well as with the increase of difficulty level. We demonstrated that there is a considerable occurrence of hand-over-face gestures (on average 21.35%) during the 40 minutes session and is unexplored in the education domain. We propose a novel deep learning approach for automatic detection of hand-over-face gestures in images with a classification accuracy of 86.87%. There is a prominent increase in hand-over-face gestures when the difficulty level of the given exercise increases. The hand-over-face gestures occur more frequently during problem-solving (easy 23.79%, medium 19.84% and difficult 30.46%) exercises in comparison to reading (easy 16.20%, medium 20.06% and difficult 20.18%)
    corecore