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Abstra
t. Non-equilibrium real-spa
e 
ondensation is a phenomenon in whi
h a

�nite fra
tion of some 
onserved quantity (mass, parti
les, et
.) be
omes spatially

lo
alized. We review two popular sto
hasti
 models of hopping parti
les that lead

to 
ondensation and whose stationary states assume a fa
torized form: the zero-

range pro
ess and the misanthrope pro
ess, and their various generalizations. We

also introdu
e a new model - a misanthrope pro
ess with parallel dynami
s - that

exhibits 
ondensation and has a pair-fa
torized stationary state.

PACS numbers: 89.75.Fb, 05.40.-a, 64.60.Ak
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1. Introdu
tion

Real-spa
e 
ondensation is a non-equilibrium phase transition whi
h o

urs in various


ontexts su
h as granular 
lustering, tra�
 jams, wealth 
ondensation or simulations of

polydisperse hard spheres [1, 2, 3, 4℄. In all of these systems there is some 
onserved

quantity (mass, wealth or volume for example) whi
h is transported through the system.

If the global density of this quantity is above a 
riti
al value, a �nite fra
tion 
ondenses

onto a single latti
e site or lo
alized region of spa
e.

Surprisingly, many features of 
ondensation are 
aptured within a simple latti
e

model known as the zero-range pro
ess (ZRP) (for review see [5, 6℄ ). In the simplest

one-dimensional asymmetri
 version of this model, a parti
le moves from site i to i+1 of

a one-dimensional periodi
 latti
e with rate u(m), where m is the o

upan
y (number

of parti
les) of the departure site i. As the rates are totally asymmetri
 a 
urrent

always �ows and detailed balan
e 
annot be satis�ed, thus the stationary state is non-

equilibrium. The great advantage of this model is that its non-equilibrium stationary

state has a simple fa
torized form whi
h is amenable to exa
t analysis. The stru
ture

for P ({mi}), the probability that ea
h site 1 ≤ i ≤ L 
ontains mass mi is

P ({mi}) =
1

ZL

L
∏

i=1

f(mi) δM,
∑

j mj
. (1)

Thus the numerator in (1) 
ontains one (non-negative) fa
tor f(mi) for ea
h site i and

f(m) is known as the single-site weight fun
tion and depends on u(m) as

f(m) =

m
∏

i=1

1

u(i)
for m ≥ 1 and f(0) = 1. (2)

The denominator ZL is the normalization or nonequilibrium partition fun
tion

ZL =

∞
∑

{mi=0}

L
∏

i=1

f(mi) δM,
∑

j mj
. (3)

In (1) and (3) the Krone
ker delta imposes the 
onstraint that the total mass (or number

of parti
les) M in the system is 
onserved.

It turns out that the zero-range pro
ess is not the only model leading to the

fa
torized steady state (1). In re
ent years, it has been shown that other models in

whi
h the hop rate depends not only on the o

upation of the departure site but also on

other variables 
an also exhibit steady states that fa
torize exa
tly [7, 8, 9, 10, 11, 12, 13℄

or approximately [14℄ over the sites of the system. It has also been dis
overed that there

exist various 
lasses of models in whi
h the steady state fa
torizes over pairs of sites

[15, 16, 17℄,

P ({mi}) =
1

ZL

L
∏

i=1

g(mi, mi+1)δM,
∑

j mj
. (4)

In (4) g(mi, mi+1) is the pairwise weight. In the following we will �rst brie�y review

some of the models with fully fa
torized and pair-fa
torized steady states and dis
uss
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onditions under whi
h 
ondensation o

urs in these models. We shall then introdu
e

a new model, a dis
rete time variant of the misanthrope pro
ess [18℄, with a pair-

fa
torized steady state in whi
h the hopping rate depends on the o

upations of the

departure and arrival sites. Su
h dis
rete time s
hemes are often used in the simulation

of tra�
 �ow and pedestrian dynami
s. In the zero-range pro
ess it has been shown

that a generalisation to dis
rete time dynami
s still results in a fa
torized stationary

state [19℄. In this work we show that the misanthrope pro
ess may have a pair-fa
torized

stationary state under dis
rete time dynami
s and we establish 
onditions under whi
h

this holds. Further, we present an analysis of 
ondensation in su
h pair-fa
torized states.

2. Zero-range pro
ess

The zero-range pro
ess is spe
i�ed by the hop rate u(m) whi
h determines the properties

of the steady state through the single-site weight f(m) from Eq. (2). It is important

to note that any exponential fa
tor Aqm in f(m) does not 
hange the steady-state

properties sin
e it appears in Eq. (1) as a 
onstant prefa
tor ALq
∑

i mi = ALqM due to

the �xed total mass M and number of sites L. From now on we will generally suppress

su
h exponential fa
tors in f(m).

Condensation in models with fa
torized stationary states o

urs in the limit L → ∞
and �xed density of parti
les ρ = M/L when the asymptoti
 (largem) behaviour of f(m)

(modulo any exponential fa
tors) is the following:

I f(m) ∼ m−γ
with γ > 2. The 
riti
al mass density, ρc, above whi
h 
ondensation

o

urs is �nite but its numeri
al value depends on the parti
ular form of f(m) and

not only on its asymptoti
 behaviour. The fra
tion ρ/ρc − 1 of all parti
les goes

into the 
ondensate. We will refer to this behaviour as standard 
ondensation. ‡
II f(m) in
reases with m more qui
kly than exponentially, e.g., as ∼ m!. This leads

to so 
alled strong (or 
omplete) 
ondensation - the 
riti
al density ρc = 0 and a

fra
tion of parti
les tending to one in the thermodynami
 limit is lo
ated at one

site.

It 
an be shown that standard 
ondensation (I) o

urs in the ZRP when the hop rates

in the limit of large m asymptoti
ally approa
h some positive value β as

u(m)

β
∼ 1 +

γ

m
(5)

with γ > 2 , or more slowly than 1/m. On the other hand strong 
ondensation o

urs

when u(m) → 0 as m → ∞. For example, u(m) = 1/m yields f(m) = m!.

To see why the 
ondensation happens in the two generi
 
ases highlighted above,

we shall follow a standard approa
h [5℄. Treating the steady-state probability as the

‡ A
tually 
ondensation also o

urs if f(m) de
ays more qui
kly than 1/mγ
, e.g., as a stret
hed

exponential.
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statisti
al weight of a given 
on�guration, and de�ning the grand-
anoni
al partition

fun
tion

G(z) =
∑

{mi}

z
∑

i miP (m1, . . . , mL) =
∑

{mi}

L
∏

i=1

f(mi)z
mi = F (z)L, (6)

where

F (z) =

∞
∑

m=0

f(m)zm, (7)

we see that the phase transition, signalled by a singularity of G(z) at some zc, is possible

only if the series F (z) has a �nite radius of 
onvergen
e zc. Moreover, the density


al
ulated as a fun
tion of fuga
ity z from the grand-
anoni
al partition fun
tion:

ρ(z) = z
F ′(z)

F (z)
(8)

must yield a value ρc < ∞ as z ր zc so that the singularity in G(z) and a

ompanying

phase transition o

ur at �nite density. This is only possible if either f(m) de
ays as a

power law in whi
h 
ase we may have a �nite ρc (
ase I) or f(m) grows very fast with

m in whi
h 
ase zc = 0 and ρc = 0 (
ase II).

Thus the grand 
anoni
al ensemble 
an only realise densities ρ ≤ ρc. When ρ > ρc
one must work in the 
anoni
al ensemble (�xed number of parti
les) [5, 20℄. It turns

out that the ex
ess mass Mex = M − Lρc 
ondenses onto a randomly sele
ted latti
e

site and forms the 
ondensate. The remainder of the system (referred to as the �uid) is

des
ribed by the grand 
anoni
al ensemble at the 
riti
al density ρc [21, 22, 20, 23, 24℄.

3. Generalized Class of Models with Fa
torized Stationary State

So far we have dis
ussed the ZRP as an example of a simple model with a fa
torized

stationary state (1). More generally one 
an ask, when does a sto
hasti
 mass transport

model have su
h a fa
torized stationary state if the hop rate depends only on the state

of the departure site? To this end a 
lass of models was studied in [19℄ that generalises

the ZRP in a number of di�erent ways while maintaining the fa
torization of the steady

state. First, more than one unit of mass 
an be transferred from site i to i+ 1. Se
ond

the dynami
s 
onsists of dis
rete time update and simultaneous transport of mass at

di�erent lo
ations is possible at an update. More pre
isely, in ea
h time step, some

number 0 ≤ µi ≤ mi of parti
les depart from site i and move to site i+1 with probability

φ(µi|mi) whi
h is known as the 
hipping kernel. For 
onservation of probability we

require

∑m

µ=0 φ(µ|m) = 1.

It was shown [19℄ that a ne
essary and su�
ient 
ondition for the stationary state

of this 
lass of models to fa
torize is that the 
hipping kernel takes the form

φ(µ|m) =
u(µ)v(m− µ)

f(m)
, (9)
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PSfrag repla
ements m

n

u(m,n)

Figure 1. De�nition of the Misanthrope pro
ess: a parti
le hops from site with m to

site with n parti
les with rate u(m,n).

where the single site weight f(m) is given by

f(m) =
m
∑

µ=0

u(µ)v(m− µ) . (10)

In these expressions u and v are positive fun
tions. Expression (9) implies a fa
torization

of the 
hipping kernel into a fa
tor u(µ) whi
h depends on the mass transferred and a

fa
tor v(m− µ) whi
h depends on the mass whi
h remains. The model 
an be further

generalized to a 
ontinuous mass variable [19℄ but we shall not 
onsider that here. The

model was also 
onsidered on an arbitrary graph rather than a periodi
 
hain and a


ondition similar to (9) was shown to be su�
ient for fa
torization [25℄.

4. Misanthrope pro
ess

As already stressed the de�ning feature of the ZRP and the 
lass of models just dis
ussed

is that transition rates or probabilities for the transfer of mass between sites depend only

on the departure site and not on the destination site. It is natural to 
onsider more

general models in whi
h for example a hop rate takes the form u(m,n) where m is the

o

upan
y of the departure site i and n is the o

upan
y of the destination site i + 1.

This type of model is variously referred to as a misanthrope or migration pro
ess.

We now de�ne the model that we 
onsider. As in the ZRP 
ase, M parti
les reside

on sites of a 1D 
losed 
hain of length L; ea
h site i 
arries mi parti
les, and the


onservation of parti
les requires that

∑L

i=1mi = M . The only di�eren
e with the ZRP

is that a parti
le hops from site i to site i + 1 with rate u(mi, mi+1) whi
h depends on

the o

upan
ies of both the departure and the arrival site, see Fig. 1.

This model has a fa
torized stationary state (1) when 
ertain 
onditions on u(m,n)

are satis�ed. Here, we simply quote the 
onstraint on u(m,n) without proof:

u(m,n) = u(m+ 1, n− 1)
u(1, m)u(n, 0)

u(m+ 1, 0)u(1, n− 1)
+ u(m, 0)− u(n, 0). (11)

It 
an be shown that this relation a
tually redu
es to two 
onditions:

u(n,m) = u(m+ 1, n− 1)
u(1, m)u(n, 0)

u(m+ 1, 0)u(1, n− 1)
, (12)

u(n,m)− u(m,n) = u(n, 0)− u(m, 0). (13)
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These 
onditions were �rst written down by Co
ozza-Thivent [18℄. Various proofs are

presented in [26℄ and [5, 6℄. Under these 
onditions the single site weights f(m) obey a

re
ursion

f(n) = f(n− 1)
f(1)

f(0)

u(1, n− 1)

u(n, 0)
. (14)

Conditions (12,13) uniquely de�ne all rates u(n,m) and the single-site weights f(m) in

terms of a set of basi
 hop rates whi
h we denote

u(m, 0) = ym, (15)

u(1, n) = xn. (16)

Iterating Eq. (14) and using the de�nitions of ym, xn (15,16) we obtain the following

expression for the single-site weight f(n):

f(n) = f(0)

(

f(1)

f(0)

)n n
∏

i=1

xi−1

yi
, (17)

in whi
h, as noted previously, we may suppress the exponential fa
tor f(0)
(

f(1)
f(0)

)n

.

Equations (12) and (13) 
an be rewritten as two re
ursion relations whi
h allow

one to �nd u(m,n) for m > 2, n > 1:

u(m+ 1, n− 1) = u(n,m)
ym+1

xm

xn−1

yn
, (18)

u(n,m) = u(m,n)− ym + yn. (19)

By iterating these equations one obtains unique expressions for all u(m,n). However,

there is an additional 
ondition that u(m,n) should be non-negative for allm,n for it to

be a hopping rate. This imposes some 
onstraints on ym, xn whi
h 
annot be expressed

in a 
losed form. Therefore it remains an open problem to determine pre
isely whi
h xn

and ym lead to a physi
al model with non negative hopping rates. However, there exists

a spe
ial 
ase of u(m,n) for whi
h more progress has been made and we shall dis
uss it

now.

5. Fa
torized hop rate in the misanthrope pro
ess

In re
ent work [27, 26℄ we 
onsidered the spe
ial 
ase

u(m,n) = w(m)v(n) (20)

whi
h 
orresponds to hopping rates whose dependen
e on departure and destination site

fa
torizes. One 
an 
he
k that for this form of the hop rate equation (12) is automati
ally

ful�lled. When v(n) = const, equation (13) is also ful�lled and we re
over the ZRP with

u(m,n) = w(m). When v(n) 6= const, equation (13) leads to the relation between w(n)

and v(n):

w(n) = C[v(n)− v(0)], (21)

with some arbitrary, non-zero 
onstant C. Thus

u(m,n) = C[v(m)− v(0)]v(n) (22)
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is the form of a fa
torized hop rate that yields a fa
torized steady state (1) with the

single-site weight given by

f(m) =

m
∏

i=1

v(i− 1)

v(i)− v(0)
. (23)

Before we dis
uss the 
ondition for 
ondensation in this model, we shall brie�y review

two simple 
hoi
es of v(m) that lead to previously studied models.

5.1. Partial Ex
lusion

Our �rst simple example of the fa
torized hopping rate (22) is C = −1 and v(n) = N−n

with some integer N > 0 we have

u(m,n) = m(N − n) . (24)

If N = 1 this redu
es to the asymmetri
 simple ex
lusion pro
ess where the o

upan
y

of ea
h site is limited to 1 and u(1, 1) = 0. Similarly, the 
ase of general integer

N > 0 
orresponds to `partial ex
lusion' [28℄ where ea
h site of a latti
e 
ontains

at most N parti
les. In this 
ontext the rate (24) may be understood as ea
h of m

parti
les attempting hops forward to the next site with rate one and the hopping attempt

su

eeding with probability N − n where n is the o

upan
y of the destination site.

5.2. In
lusion Pro
ess

If we take C = 1 and

v(n) = n+ d (25)

in (22) where d is a positive 
onstant, we obtain

u(m,n) = m(n+ d) . (26)

This is the hop rate for the so-
alled In
lusion Pro
ess studied in [29℄. In the limit

d → 0 this model exhibits a distin
t form of 
ondensation. (To avoid 
onfusion, we also

note that a di�erent model involving 
oales
en
e of parti
les is also referred to as an

In
lusion Pro
ess [30℄.)

6. Condensation in the misanthrope pro
ess with fa
torized hop rates

We are interested in a fa
torized form of u(m,n) from Eq. (22) su
h that Eq. (14) gives

f(n) ∼ n−γ
with γ > 2 whi
h as we know leads to standard 
ondensation. It turns out

that the standard 
ondensation 
an o

ur through two 
ontrasting types of dynami
s.

One me
hanism is through the hops rates de
aying su�
iently slowly with n, m. This


an be a
hieved through

v(m) ∼= β
(

1− α

m

)

(27)
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whi
h leads to

u(m,n) ∼= β(v(0)− β)− αβ(v(0)− β)

n
+

αβ2

m
, (28)

whi
h de
ays with m in a similar fashion to the ZRP 
ase. The other me
hanism is for

the hop rates to in
rease with m, and n as

u(m,n) ∼ (mn)γ (29)

with γ > 2, whi
h is equivalent to

v(m) ∼ mγ. (30)

We refer to the latter 
ase as explosive 
ondensation. Explosive 
ondensation exhibits

strikingly di�erent dynami
al properties to the ZRP-like 
ondensation. In parti
ular,

the 
ondensate emerges on a time s
ale whi
h vanishes with system size L as ∼ (lnL)1−γ

for γ > 2 [27℄. This is in 
ontrast to the 
ase (27) or the ZRP 
ase for whi
h the time

in
reases with L as ∼ L2
.

Interestingly, for the misanthrope pro
ess the existen
e of 
ondensation depends not

only on the asymptoti
 behaviour of v(m) but also on v(0). This should be 
ontrasted

with the ZRP for whi
h it is only the asymptoti
 de
ay of the hop rate that determines


ondensation. To illustrate this point 
onsider the 
ase [26℄

v(0) < 1, v(m) = 1 +
1

m+ 1
. (31)

In this 
ase one 
an �nd 
losed form expressions for the weights f(n) and generating

fun
tion F (z) and one may determine the 
riti
al density given by z → 1:

ρc =
4(1− v(0))

3v(0)− 2
. (32)

We see that ρc → 0 as v(0) → 1 and ρc → ∞ as v(0) → 2/3. Consequently for v(0) ≤ 2/3

there is no 
ondensation, but for 2/3 < v(0) < 1 there is standard 
ondensation and

for v(0) = 1 there is strong 
ondensation, even though v(m) is the same in all 
ases for

m > 0.

7. Pair-fa
torized steady states

So far we have dis
ussed the pro
esses in whi
h the stationary probability P (m1, . . . , mL)

fa
torizes over sites of a 1d 
losed 
hain. One 
an 
onsider generalisations of this

stru
ture to, for example, a pair-fa
torized state in whi
h there is fa
torization over pairs

of adja
ent sites in whi
h the stationary probabilities take the form (4) where g(m,n)

is the pairwise weight. The fa
torized stationary state (1) is re
overed when g(m,n)

fa
torizes: g(m,n) = a(m)b(n), in whi
h 
ase the single-site weight f(m) = a(m)b(m).

Su
h pair-fa
torized stationary states have been 
onsidered in models [15, 16℄ with

hopping rates u(mi−1, mi, mi+1) whi
h depend on the state of both (left and right)

nearest neighbours:

u(mi−1, mi, mi+1) =
g(mi − 1, mi−1)

g(mi, mi−1)

g(mi − 1, mi+1)

g(mi, mi+1)
, (33)
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Figure 2. Phase diagram for K(x) ∼ e−|x|β
and p(m) ∼ e−m

γ

. The spatial extension

of the 
ondensate ∼ Lα
, where αrect = (β − γ)/(β − γ + 1) for the re
tangular and

αsmooth = (β − γ)/(2β − γ) for the smooth 
ondensate. Dotted lines 
orrespond to


onstant values of α = 0.05, 0.1, . . . , 0.45. Reprodu
ed from [31℄.

where g(m,n) is the same two-point weight that appears in the expression for the steady-

state probability (4). It has been shown that a pair-fa
torized stationary state may

modify the nature of 
ondensation and allow a 
ondensate spreading over a large, but

non extensive number of sites. For example, if

g(m,n) = exp [−J |m− n|+ (U/2)(δm,0 + δn,0)] , (34)

the 
ondensate's shape is a distorted parabola extending to ∼
√
L sites [15℄. Referen
es

[16, 31℄ have 
onsidered a more general 
ase

g(m,n) = K(|m− n|)
√

p(m)p(n), (35)

where K(m) and p(m) 
an be arbitrary, su�
iently-fast de
aying fun
tions. It turns

out that when

K(x) ∼ e−a|x|β , p(m) ∼ e−bmγ

, (36)

for a, b, β, γ > 0, 
ondensation o

urs above a 
ertain 
riti
al density of parti
les if

γ < 1. The shape of the 
ondensate 
hanges from a single-site one, through a re
tangular


ondensate, to a paraboli
 
ondensate as β in
reases from zero to one, and from one to

in�nity, see the phase diagram in Fig. 2. The s
aling of the width of the 
ondensate

with L depends on the parameters β, γ in a non-trivial way. These results have been

re
ently 
on�rmed numeri
ally [17℄, with some small dis
repan
ies attributed to �nite-

size e�e
ts.

8. Pair-fa
torized states for dis
rete time dynami
s

The pair-fa
torized steady state dis
ussed in the previous se
tion assumes a three-site

hop rate (33). A very interesting question to ask is whether a two-point u(m,n) su
h

as the one in the misanthrope pro
ess 
an also lead to a pair-fa
torized steady state.

One might have hoped that when the hop rate u(n,m) does not satisfy the


onditions for a fa
torized stationary state, there would still be some 
hoi
es of rates
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u(m,n) whi
h yield pair-fa
torized states. However it was shown in [26℄ that this is not

the 
ase. Therefore the misanthrope pro
ess either has a fa
torized stationary state or

the stationary state has some unknown stru
ture.

Here we 
onsider a generalisation of the misanthrope pro
ess similar to the

generalisation of the zero-range pro
ess reviewed in Se
tion 3. That is, we 
onsider

a Misanthrope-like model with sto
hasti
 dis
rete-time parallel dynami
s where all

parti
les attempt hops at dis
rete time steps. Su
h parallel dynami
s are often employed

in models of vehi
ular tra�
 and pedestrian dynami
s [32℄. Our aim is determine how

the stru
ture of the stationary state is modi�ed. It turns out that we need to 
onsider

pair fa
torization for the steady state probability.

The dynami
s we 
onsider generalise the misanthrope pro
ess in two ways. First

masses move at dis
rete timesteps therefore there 
an be simultaneous transport of mass

at di�erent lo
ations. Se
ond, more than one unit of mass 
an be transferred from site

i to i+ 1.

More pre
isely, in ea
h time step, some number µi of parti
les depart from site i and

move to site i+1 with probability φ(µi|mi, mi+1). Clearly, we must have φ(µ|m,n) = 0

for µ > m and for 
onservation of probability we require

∑m

µ=0 φ(µ|m,n) = 1. Following

[19℄ we will refer to φ(µ|m,n) as the 
hipping kernel.

One would like to know whether there is a ne
essary and su�
ient 
ondition on

φ(µ|m,n) for the steady state P (m1, . . . , mL) to fa
torize over pairs of neighbouring

sites. This means that the following equation must be ful�lled:

L
∏

i=1

g(mi, mi+1) =
∑

µ1,...,µL

L
∏

i=1

φ(µi|mi + µi − µi−1, mi+1 + µi+1 − µi)

× g(mi + µi − µi−1, mi+1 + µi+1 − µi) . (37)

The left hand side of this equation gives the weight (unnormalized probability) of some


on�guration of mass in the system given by {mi}. The right hand side gives the

sum over the weights of possible 
on�gurations at the previous time step multiplied

by the transition probabilities to the 
on�guration {mi}. The sum over pre
eding


on�gurations is expressed as a sum over the masses, µi, transferred from i to i + 1.

Thus at the previous time step site i had mass mi + µi − µi−1. For a stationary state

the two sides of (37) must be equal.

We now 
laim that a 
hipping kernel of the form

φ(µ|m,n) =
u(µ)a(m− µ)b(n + µ)

g(m,n)
, (38)

where

g(m,n) =
m
∑

µ=0

u(µ)a(m− µ)b(n + µ), (39)

is su�
ient for pair fa
torization provided that some additional 
onstraint is imposed on

the fun
tions u(µ), a(m), b(n). Expression (38) implies a fa
torization of the 
hipping

kernel into a fa
tor u(µ) whi
h depends on the mass transferred, a fa
tor a(m−µ) whi
h
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depends on the mass whi
h remains at the departure site and a fa
tor b(n + µ) whi
h

depends on the resulting mass at the destination site.

To demonstrate that the form (38) indeed leads to pair-fa
torized stationary state,

let us insert (38) into the stationarity 
ondition Eq. (37). Rearranging indi
es we obtain

∏

i

g(mi, mi+1) =
∑

{µi}

∏

i

(u(µi)a(mi − µi−1)b(mi+1 + µi+1))

=
∏

i

(

∑

µi

u(µi)a(mi+1 − µi)b(mi + µi)

)

=
∏

i

g(mi+1, mi) . (40)

In other words, for pair fa
torization under the form (38) we require

∏

i

g(mi, mi+1)/g(mi+1, mi) = 1 . (41)

The most general solution to this equation assumes the form (for a proof see [26℄

Appendix A)

g(m,n) = g(n,m)
h(n)

h(m)
, (42)

where h(m) is some fun
tion whi
h 
an be determined by inserting n = 0 into the above

equation:

h(m) = h(0)
g(0, m)

g(m, 0)
. (43)

Finally, from (42) and (43) we obtain

g(m,n)g(0, m)g(n, 0) = g(n,m)g(m, 0)g(0, n) . (44)

Equation (44), in tandem with the de�nition (39), is the 
entral result of this se
tion

and gives a su�
ient 
ondition for the stationary state of the generalised misanthrope

pro
ess to take a pair-fa
torized form. It implies 
onditions on u(µ), a(m), b(n) whi
h

we explore in the next se
tion. It remains an open problem as to whether Eq. (44) is

also a ne
essary 
ondition.

8.1. Single parti
le hopping

To simplify the dis
ussion we we now fo
us on the misanthrope-like 
ase when at most

one parti
le 
an hop from a given site in ea
h timestep. For this purpose we take

u(µ) = δµ,0 +∆tδµ,1, and (39) yields

g(m,n) = a(m)b(n) + ∆ta(m− 1)b(n + 1). (45)

At this stage ∆t is a parameter but as we shall verify later the limit ∆t → 0 redu
es to

the usual 
ontinuous time misanthrope pro
ess. We will derive now the relation between
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a(m) and b(m) for arbitrary ∆t > 0. Inserting (45) in 
ondition (44) leads, after some

algebra, to

b̃(0)− b̃(m)

ã(m)
−∆tb̃(0)b̃(m) =

b̃(0)− b̃(n)

ã(n)
−∆tb̃(0)b̃(n), (46)

where we have de�ned

ã(m) = a(m− 1)/a(m), (47)

b̃(m) = b(m+ 1)/b(m). (48)

The left and right side of equation (46) are fun
tions of m and n, respe
tively. In order

for (46) to be valid for any m, n, both sides of the above equation must be equal to a


onstant k. This gives

b̃(m) =
b̃(0)− 1

k
ã(m)

1 + ∆tb̃(0)ã(m)
(49)

or, equivalently,

ã(m) = k
b̃(0)− b̃(m)

1 + k∆tb̃(0)b̃(m)
. (50)

Therefore, ã(m) is determined by b̃(m) and vi
e versa, up to two parameters k and ∆t.

The 
hipping probability φ(1|m,n) 
an then be expressed as

φ(1|m,n) = k∆tb̃(n)
b̃(0)− b̃(m)

1 + k∆t(b̃(m)b̃(0) + b̃(n)b̃(0)− b̃(m)b̃(n))
, (51)

and be
ause the hopping probability de�nes the model, all stati
 and dynami
al

properties are fully spe
i�ed by giving k,∆t and one of the two fun
tions ã(m) or b̃(m).

The pairwise weight fun
tion g(m,n) is given by Eq. (45), with a(m), b(n) 
al
ulated

re
ursively:

a(m) =
m
∏

i=1

1

ã(i)
, b(n) =

n
∏

i=1

b̃(i− 1), (52)

where we assumed for 
onvenien
e that a(0) = b(0) = 1. This assumption is made

without loss of generality as it only res
ales g(m,n) by a 
onstant fa
tor.

In the limit ∆t → 0, we obtain fa
torization of the steady state, sin
e (45) tends

to g(m,n) = a(m)b(n) 
orresponding to a single-site weight f(m) = a(m)b(m). The


hipping probability be
omes

φ(1|m,n) = ∆t ã(m)b̃(n) +O(∆t2), (53)

and in the 
ontinuous time limit ∆t → 0 this redu
es to a hopping rate

u(m,n) = ã(m)b̃(n), (54)

whereas 
ondition (46) redu
es to

b̃(0)− b̃(m)

ã(m)
=

b̃(0)− b̃(n)

ã(n)
, (55)

whi
h is equivalent to the 
ondition (13) for the misanthrope pro
ess.
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8.2. Condition for 
ondensation

In this se
tion we shall outline how the above dis
rete-time misanthrope pro
ess with

fa
torized hopping probability exhibits 
ondensation above some 
riti
al density of

parti
les. We shall learn, perhaps not surprisingly, that the 
onditions on the hopping

probability φ(1|m,n) are somewhat similar to those for the hopping rate u(m,n) in the


ontinuous time 
ase.

We begin by de�ning the grand-
anoni
al partition fun
tion

G(z) =
∑

{mi}

z
∑

i miW ({mi}), (56)

where the steady-state weights reads

W ({mi}) =
L
∏

i=1

g(mi, mi+1)

=

L
∏

i=1

[a(mi)b(mi+1) + ∆ta(mi − 1)b(mi+1 + 1)] . (57)

We now observe that the expression in square bra
kets in Eq. (57) 
an be viewed as a

produ
t of two ve
tors:

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)

, (58)

and hen
e the steady-state weight 
an be rewritten as

W ({mi}) =
L
∏

i=1

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)

= Tr

[

L
∏

i=1

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)]

= Tr

[

L
∏

i=1

(

b(mi)

b(mi + 1)

)

(a(mi) + ∆ta(mi − 1))

]

= Tr

[

L
∏

i=1

(

a(mi)b(mi) ∆ta(mi − 1)b(mi)

a(mi)b(mi + 1) ∆ta(mi − 1)b(mi + 1)

)]

, (59)

where in the penultimate step we have 
y
li
ally permuted the ve
tors under the tra
e

and in the last step evaluated the resulting dyadi
 produ
t. The grand-
anoni
al

partition fun
tion be
omes

G(z) = Tr
[

A(z)L
]

, (60)

where A(z) is a 2× 2 matrix:

A(z) =

(

∑

m a(m)b(m)zm ∆t
∑

m a(m− 1)b(m)zm
∑

m a(m)b(m + 1)zm ∆t
∑

m a(m− 1)b(m+ 1)zm

)

. (61)
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The above matrix has two eigenvalues

λ±(z) =
1

2

(

A11(z) + A22(z)±
√

(A11(z)− A22(z))2 + 4A12(z)A21(z)
)

,(62)

where Aij is an element of (61). Sin
e λ+ is always greater than λ−, provided that z > 0,

lnG(z) ∼= L lnλ+ for large system size L, and we obtain that, in the thermodynami


limit, the density-fuga
ity relation is given by

ρ(z) = z
λ

′

+(z)

λ+(z)
. (63)

Sin
e ρ(z) is an in
reasing fun
tion of z, 
ondensation will o

ur if ρ(z) tends to a �nite

value as z approa
hes its maximum allowed value. This maximum allowed value is zc
� the radius of 
onvergen
e of λ+(z). From Eqs. (62) and (61) we see that the radius

of 
onvergen
e of λ+(z) is the radius of 
onvergen
e of any of the four entries of A(z).

If we fo
us, say, on A11(z), we see that 
ondensation 
riteria redu
e to the 
onvergen
e

properties of the sum

∑

m a(m)b(m)zm. Hen
e, 
ondensation is possible if

f̃(m) = a(m)b(m) (64)

behaves in one of two ways des
ribed earlier i.e. here f̃(m) plays the same role as the

single-site weight f(m) in se
tion 1 
ases I, II.

9. Dis
ussion

In this paper we have given a short review of 
ondensation in fa
torized and pair-

fa
torized states. In parti
ular we have dis
ussed the misanthrope pro
ess where the hop

rates u(mi, mi+1) depend on the o

upan
y of both the departure site i and destination

site i+ 1. This pro
ess provides a new route to the standard 
ondensation s
enario for

the 
ase of in
reasing hop rate u(m,n) ∼ mγnγ
for γ > 2.

The dynami
s of this new �explosive 
ondensation� has been explored in detail

in Refs. [27, 26℄. Interestingly, explosive 
ondensation shows some parallels to

instantaneous gelation observed in 
luster-
luster aggregation models [33, 34, 35, 36℄,

a 
lass of models used to study gelation (see Ref. [37℄ for a review). We refer the

reader to Ref. [26℄ for a more thorough dis
ussion; here we will only mention it brie�y.

Instantaneous gelation o

urs when 
lusters of parti
les of sizes m,n merge irreversibly

with rate ∼ mµnν + nµmν
and when µ + ν > 1 and the bigger of the exponents µ, ν

is greater than one. In this 
ase, gelation i.e. the pro
ess of forming a single large


luster o

urs instantaneously in the thermodynami
 limit. More spe
i�
ally, the time to

gelation de
reases to zero with in
reasing total mass (size) of the system. Instantaneous

gelation also o

urs in ex
hange driven growth [36℄ in whi
h parti
les are transferred

between 
lusters at a rate ∼ mµnν+nµmν
. Here the 
ondition for instantaneous gelation

is that the larger of the two exponents γ = max(µ, ν) > 2; the time to gelation de
reases

as ∼ (lnL)−(γ−2)
. This is quantitatively di�erent to explosive 
ondensation, in whi
h

the time to 
ondensation s
ales as ∼ (lnL)−(γ−1)
, despite the fa
t that the dynami
s of

both models is qualitatively very similar.
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We also have studied a generalisation of the misanthrope pro
ess to a parallel

dis
rete time updating s
heme in whi
h simultaneous transfer of mass at di�erent

lo
ations 
an o

ur. We have shown that 
onditions exist for the stationary state

to take a pair-fa
torized form. These 
onditions generalize the 
onditions (12,13) for

fa
torization in the 
ontinuous time 
ase. Thus the 
ontinuous time fa
torized stationary

state is modi�ed into a pair-fa
torized state when dis
rete time dynami
s are 
onsidered.

This 
ontrasts with the zero-range pro
ess in whi
h a fa
torized form is maintained under

dis
rete time updating.

A major open question whi
h remains is the stru
ture of the misanthrope pro
ess

stationary state for general hopping rates. Also it would be of interest to generalise the


onditions for fa
torization and pair fa
torization in the misanthrope pro
ess to more

general geometries than the one-dimensional periodi
 
hain.
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