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Abstrat. Non-equilibrium real-spae ondensation is a phenomenon in whih a

�nite fration of some onserved quantity (mass, partiles, et.) beomes spatially

loalized. We review two popular stohasti models of hopping partiles that lead

to ondensation and whose stationary states assume a fatorized form: the zero-

range proess and the misanthrope proess, and their various generalizations. We

also introdue a new model - a misanthrope proess with parallel dynamis - that

exhibits ondensation and has a pair-fatorized stationary state.
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1. Introdution

Real-spae ondensation is a non-equilibrium phase transition whih ours in various

ontexts suh as granular lustering, tra� jams, wealth ondensation or simulations of

polydisperse hard spheres [1, 2, 3, 4℄. In all of these systems there is some onserved

quantity (mass, wealth or volume for example) whih is transported through the system.

If the global density of this quantity is above a ritial value, a �nite fration ondenses

onto a single lattie site or loalized region of spae.

Surprisingly, many features of ondensation are aptured within a simple lattie

model known as the zero-range proess (ZRP) (for review see [5, 6℄ ). In the simplest

one-dimensional asymmetri version of this model, a partile moves from site i to i+1 of

a one-dimensional periodi lattie with rate u(m), where m is the oupany (number

of partiles) of the departure site i. As the rates are totally asymmetri a urrent

always �ows and detailed balane annot be satis�ed, thus the stationary state is non-

equilibrium. The great advantage of this model is that its non-equilibrium stationary

state has a simple fatorized form whih is amenable to exat analysis. The struture

for P ({mi}), the probability that eah site 1 ≤ i ≤ L ontains mass mi is

P ({mi}) =
1

ZL

L
∏

i=1

f(mi) δM,
∑

j mj
. (1)

Thus the numerator in (1) ontains one (non-negative) fator f(mi) for eah site i and

f(m) is known as the single-site weight funtion and depends on u(m) as

f(m) =

m
∏

i=1

1

u(i)
for m ≥ 1 and f(0) = 1. (2)

The denominator ZL is the normalization or nonequilibrium partition funtion

ZL =

∞
∑

{mi=0}

L
∏

i=1

f(mi) δM,
∑

j mj
. (3)

In (1) and (3) the Kroneker delta imposes the onstraint that the total mass (or number

of partiles) M in the system is onserved.

It turns out that the zero-range proess is not the only model leading to the

fatorized steady state (1). In reent years, it has been shown that other models in

whih the hop rate depends not only on the oupation of the departure site but also on

other variables an also exhibit steady states that fatorize exatly [7, 8, 9, 10, 11, 12, 13℄

or approximately [14℄ over the sites of the system. It has also been disovered that there

exist various lasses of models in whih the steady state fatorizes over pairs of sites

[15, 16, 17℄,

P ({mi}) =
1

ZL

L
∏

i=1

g(mi, mi+1)δM,
∑

j mj
. (4)

In (4) g(mi, mi+1) is the pairwise weight. In the following we will �rst brie�y review

some of the models with fully fatorized and pair-fatorized steady states and disuss
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onditions under whih ondensation ours in these models. We shall then introdue

a new model, a disrete time variant of the misanthrope proess [18℄, with a pair-

fatorized steady state in whih the hopping rate depends on the oupations of the

departure and arrival sites. Suh disrete time shemes are often used in the simulation

of tra� �ow and pedestrian dynamis. In the zero-range proess it has been shown

that a generalisation to disrete time dynamis still results in a fatorized stationary

state [19℄. In this work we show that the misanthrope proess may have a pair-fatorized

stationary state under disrete time dynamis and we establish onditions under whih

this holds. Further, we present an analysis of ondensation in suh pair-fatorized states.

2. Zero-range proess

The zero-range proess is spei�ed by the hop rate u(m) whih determines the properties

of the steady state through the single-site weight f(m) from Eq. (2). It is important

to note that any exponential fator Aqm in f(m) does not hange the steady-state

properties sine it appears in Eq. (1) as a onstant prefator ALq
∑

i mi = ALqM due to

the �xed total mass M and number of sites L. From now on we will generally suppress

suh exponential fators in f(m).

Condensation in models with fatorized stationary states ours in the limit L → ∞
and �xed density of partiles ρ = M/L when the asymptoti (largem) behaviour of f(m)

(modulo any exponential fators) is the following:

I f(m) ∼ m−γ
with γ > 2. The ritial mass density, ρc, above whih ondensation

ours is �nite but its numerial value depends on the partiular form of f(m) and

not only on its asymptoti behaviour. The fration ρ/ρc − 1 of all partiles goes

into the ondensate. We will refer to this behaviour as standard ondensation. ‡
II f(m) inreases with m more quikly than exponentially, e.g., as ∼ m!. This leads

to so alled strong (or omplete) ondensation - the ritial density ρc = 0 and a

fration of partiles tending to one in the thermodynami limit is loated at one

site.

It an be shown that standard ondensation (I) ours in the ZRP when the hop rates

in the limit of large m asymptotially approah some positive value β as

u(m)

β
∼ 1 +

γ

m
(5)

with γ > 2 , or more slowly than 1/m. On the other hand strong ondensation ours

when u(m) → 0 as m → ∞. For example, u(m) = 1/m yields f(m) = m!.

To see why the ondensation happens in the two generi ases highlighted above,

we shall follow a standard approah [5℄. Treating the steady-state probability as the

‡ Atually ondensation also ours if f(m) deays more quikly than 1/mγ
, e.g., as a strethed

exponential.
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statistial weight of a given on�guration, and de�ning the grand-anonial partition

funtion

G(z) =
∑

{mi}

z
∑

i miP (m1, . . . , mL) =
∑

{mi}

L
∏

i=1

f(mi)z
mi = F (z)L, (6)

where

F (z) =

∞
∑

m=0

f(m)zm, (7)

we see that the phase transition, signalled by a singularity of G(z) at some zc, is possible

only if the series F (z) has a �nite radius of onvergene zc. Moreover, the density

alulated as a funtion of fugaity z from the grand-anonial partition funtion:

ρ(z) = z
F ′(z)

F (z)
(8)

must yield a value ρc < ∞ as z ր zc so that the singularity in G(z) and aompanying

phase transition our at �nite density. This is only possible if either f(m) deays as a

power law in whih ase we may have a �nite ρc (ase I) or f(m) grows very fast with

m in whih ase zc = 0 and ρc = 0 (ase II).

Thus the grand anonial ensemble an only realise densities ρ ≤ ρc. When ρ > ρc
one must work in the anonial ensemble (�xed number of partiles) [5, 20℄. It turns

out that the exess mass Mex = M − Lρc ondenses onto a randomly seleted lattie

site and forms the ondensate. The remainder of the system (referred to as the �uid) is

desribed by the grand anonial ensemble at the ritial density ρc [21, 22, 20, 23, 24℄.

3. Generalized Class of Models with Fatorized Stationary State

So far we have disussed the ZRP as an example of a simple model with a fatorized

stationary state (1). More generally one an ask, when does a stohasti mass transport

model have suh a fatorized stationary state if the hop rate depends only on the state

of the departure site? To this end a lass of models was studied in [19℄ that generalises

the ZRP in a number of di�erent ways while maintaining the fatorization of the steady

state. First, more than one unit of mass an be transferred from site i to i+ 1. Seond

the dynamis onsists of disrete time update and simultaneous transport of mass at

di�erent loations is possible at an update. More preisely, in eah time step, some

number 0 ≤ µi ≤ mi of partiles depart from site i and move to site i+1 with probability

φ(µi|mi) whih is known as the hipping kernel. For onservation of probability we

require

∑m

µ=0 φ(µ|m) = 1.

It was shown [19℄ that a neessary and su�ient ondition for the stationary state

of this lass of models to fatorize is that the hipping kernel takes the form

φ(µ|m) =
u(µ)v(m− µ)

f(m)
, (9)
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PSfrag replaements m

n

u(m,n)

Figure 1. De�nition of the Misanthrope proess: a partile hops from site with m to

site with n partiles with rate u(m,n).

where the single site weight f(m) is given by

f(m) =
m
∑

µ=0

u(µ)v(m− µ) . (10)

In these expressions u and v are positive funtions. Expression (9) implies a fatorization

of the hipping kernel into a fator u(µ) whih depends on the mass transferred and a

fator v(m− µ) whih depends on the mass whih remains. The model an be further

generalized to a ontinuous mass variable [19℄ but we shall not onsider that here. The

model was also onsidered on an arbitrary graph rather than a periodi hain and a

ondition similar to (9) was shown to be su�ient for fatorization [25℄.

4. Misanthrope proess

As already stressed the de�ning feature of the ZRP and the lass of models just disussed

is that transition rates or probabilities for the transfer of mass between sites depend only

on the departure site and not on the destination site. It is natural to onsider more

general models in whih for example a hop rate takes the form u(m,n) where m is the

oupany of the departure site i and n is the oupany of the destination site i + 1.

This type of model is variously referred to as a misanthrope or migration proess.

We now de�ne the model that we onsider. As in the ZRP ase, M partiles reside

on sites of a 1D losed hain of length L; eah site i arries mi partiles, and the

onservation of partiles requires that

∑L

i=1mi = M . The only di�erene with the ZRP

is that a partile hops from site i to site i + 1 with rate u(mi, mi+1) whih depends on

the oupanies of both the departure and the arrival site, see Fig. 1.

This model has a fatorized stationary state (1) when ertain onditions on u(m,n)

are satis�ed. Here, we simply quote the onstraint on u(m,n) without proof:

u(m,n) = u(m+ 1, n− 1)
u(1, m)u(n, 0)

u(m+ 1, 0)u(1, n− 1)
+ u(m, 0)− u(n, 0). (11)

It an be shown that this relation atually redues to two onditions:

u(n,m) = u(m+ 1, n− 1)
u(1, m)u(n, 0)

u(m+ 1, 0)u(1, n− 1)
, (12)

u(n,m)− u(m,n) = u(n, 0)− u(m, 0). (13)
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These onditions were �rst written down by Coozza-Thivent [18℄. Various proofs are

presented in [26℄ and [5, 6℄. Under these onditions the single site weights f(m) obey a

reursion

f(n) = f(n− 1)
f(1)

f(0)

u(1, n− 1)

u(n, 0)
. (14)

Conditions (12,13) uniquely de�ne all rates u(n,m) and the single-site weights f(m) in

terms of a set of basi hop rates whih we denote

u(m, 0) = ym, (15)

u(1, n) = xn. (16)

Iterating Eq. (14) and using the de�nitions of ym, xn (15,16) we obtain the following

expression for the single-site weight f(n):

f(n) = f(0)

(

f(1)

f(0)

)n n
∏

i=1

xi−1

yi
, (17)

in whih, as noted previously, we may suppress the exponential fator f(0)
(

f(1)
f(0)

)n

.

Equations (12) and (13) an be rewritten as two reursion relations whih allow

one to �nd u(m,n) for m > 2, n > 1:

u(m+ 1, n− 1) = u(n,m)
ym+1

xm

xn−1

yn
, (18)

u(n,m) = u(m,n)− ym + yn. (19)

By iterating these equations one obtains unique expressions for all u(m,n). However,

there is an additional ondition that u(m,n) should be non-negative for allm,n for it to

be a hopping rate. This imposes some onstraints on ym, xn whih annot be expressed

in a losed form. Therefore it remains an open problem to determine preisely whih xn

and ym lead to a physial model with non negative hopping rates. However, there exists

a speial ase of u(m,n) for whih more progress has been made and we shall disuss it

now.

5. Fatorized hop rate in the misanthrope proess

In reent work [27, 26℄ we onsidered the speial ase

u(m,n) = w(m)v(n) (20)

whih orresponds to hopping rates whose dependene on departure and destination site

fatorizes. One an hek that for this form of the hop rate equation (12) is automatially

ful�lled. When v(n) = const, equation (13) is also ful�lled and we reover the ZRP with

u(m,n) = w(m). When v(n) 6= const, equation (13) leads to the relation between w(n)

and v(n):

w(n) = C[v(n)− v(0)], (21)

with some arbitrary, non-zero onstant C. Thus

u(m,n) = C[v(m)− v(0)]v(n) (22)
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is the form of a fatorized hop rate that yields a fatorized steady state (1) with the

single-site weight given by

f(m) =

m
∏

i=1

v(i− 1)

v(i)− v(0)
. (23)

Before we disuss the ondition for ondensation in this model, we shall brie�y review

two simple hoies of v(m) that lead to previously studied models.

5.1. Partial Exlusion

Our �rst simple example of the fatorized hopping rate (22) is C = −1 and v(n) = N−n

with some integer N > 0 we have

u(m,n) = m(N − n) . (24)

If N = 1 this redues to the asymmetri simple exlusion proess where the oupany

of eah site is limited to 1 and u(1, 1) = 0. Similarly, the ase of general integer

N > 0 orresponds to `partial exlusion' [28℄ where eah site of a lattie ontains

at most N partiles. In this ontext the rate (24) may be understood as eah of m

partiles attempting hops forward to the next site with rate one and the hopping attempt

sueeding with probability N − n where n is the oupany of the destination site.

5.2. Inlusion Proess

If we take C = 1 and

v(n) = n+ d (25)

in (22) where d is a positive onstant, we obtain

u(m,n) = m(n+ d) . (26)

This is the hop rate for the so-alled Inlusion Proess studied in [29℄. In the limit

d → 0 this model exhibits a distint form of ondensation. (To avoid onfusion, we also

note that a di�erent model involving oalesene of partiles is also referred to as an

Inlusion Proess [30℄.)

6. Condensation in the misanthrope proess with fatorized hop rates

We are interested in a fatorized form of u(m,n) from Eq. (22) suh that Eq. (14) gives

f(n) ∼ n−γ
with γ > 2 whih as we know leads to standard ondensation. It turns out

that the standard ondensation an our through two ontrasting types of dynamis.

One mehanism is through the hops rates deaying su�iently slowly with n, m. This

an be ahieved through

v(m) ∼= β
(

1− α

m

)

(27)
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whih leads to

u(m,n) ∼= β(v(0)− β)− αβ(v(0)− β)

n
+

αβ2

m
, (28)

whih deays with m in a similar fashion to the ZRP ase. The other mehanism is for

the hop rates to inrease with m, and n as

u(m,n) ∼ (mn)γ (29)

with γ > 2, whih is equivalent to

v(m) ∼ mγ. (30)

We refer to the latter ase as explosive ondensation. Explosive ondensation exhibits

strikingly di�erent dynamial properties to the ZRP-like ondensation. In partiular,

the ondensate emerges on a time sale whih vanishes with system size L as ∼ (lnL)1−γ

for γ > 2 [27℄. This is in ontrast to the ase (27) or the ZRP ase for whih the time

inreases with L as ∼ L2
.

Interestingly, for the misanthrope proess the existene of ondensation depends not

only on the asymptoti behaviour of v(m) but also on v(0). This should be ontrasted

with the ZRP for whih it is only the asymptoti deay of the hop rate that determines

ondensation. To illustrate this point onsider the ase [26℄

v(0) < 1, v(m) = 1 +
1

m+ 1
. (31)

In this ase one an �nd losed form expressions for the weights f(n) and generating

funtion F (z) and one may determine the ritial density given by z → 1:

ρc =
4(1− v(0))

3v(0)− 2
. (32)

We see that ρc → 0 as v(0) → 1 and ρc → ∞ as v(0) → 2/3. Consequently for v(0) ≤ 2/3

there is no ondensation, but for 2/3 < v(0) < 1 there is standard ondensation and

for v(0) = 1 there is strong ondensation, even though v(m) is the same in all ases for

m > 0.

7. Pair-fatorized steady states

So far we have disussed the proesses in whih the stationary probability P (m1, . . . , mL)

fatorizes over sites of a 1d losed hain. One an onsider generalisations of this

struture to, for example, a pair-fatorized state in whih there is fatorization over pairs

of adjaent sites in whih the stationary probabilities take the form (4) where g(m,n)

is the pairwise weight. The fatorized stationary state (1) is reovered when g(m,n)

fatorizes: g(m,n) = a(m)b(n), in whih ase the single-site weight f(m) = a(m)b(m).

Suh pair-fatorized stationary states have been onsidered in models [15, 16℄ with

hopping rates u(mi−1, mi, mi+1) whih depend on the state of both (left and right)

nearest neighbours:

u(mi−1, mi, mi+1) =
g(mi − 1, mi−1)

g(mi, mi−1)

g(mi − 1, mi+1)

g(mi, mi+1)
, (33)
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Figure 2. Phase diagram for K(x) ∼ e−|x|β
and p(m) ∼ e−m

γ

. The spatial extension

of the ondensate ∼ Lα
, where αrect = (β − γ)/(β − γ + 1) for the retangular and

αsmooth = (β − γ)/(2β − γ) for the smooth ondensate. Dotted lines orrespond to

onstant values of α = 0.05, 0.1, . . . , 0.45. Reprodued from [31℄.

where g(m,n) is the same two-point weight that appears in the expression for the steady-

state probability (4). It has been shown that a pair-fatorized stationary state may

modify the nature of ondensation and allow a ondensate spreading over a large, but

non extensive number of sites. For example, if

g(m,n) = exp [−J |m− n|+ (U/2)(δm,0 + δn,0)] , (34)

the ondensate's shape is a distorted parabola extending to ∼
√
L sites [15℄. Referenes

[16, 31℄ have onsidered a more general ase

g(m,n) = K(|m− n|)
√

p(m)p(n), (35)

where K(m) and p(m) an be arbitrary, su�iently-fast deaying funtions. It turns

out that when

K(x) ∼ e−a|x|β , p(m) ∼ e−bmγ

, (36)

for a, b, β, γ > 0, ondensation ours above a ertain ritial density of partiles if

γ < 1. The shape of the ondensate hanges from a single-site one, through a retangular

ondensate, to a paraboli ondensate as β inreases from zero to one, and from one to

in�nity, see the phase diagram in Fig. 2. The saling of the width of the ondensate

with L depends on the parameters β, γ in a non-trivial way. These results have been

reently on�rmed numerially [17℄, with some small disrepanies attributed to �nite-

size e�ets.

8. Pair-fatorized states for disrete time dynamis

The pair-fatorized steady state disussed in the previous setion assumes a three-site

hop rate (33). A very interesting question to ask is whether a two-point u(m,n) suh

as the one in the misanthrope proess an also lead to a pair-fatorized steady state.

One might have hoped that when the hop rate u(n,m) does not satisfy the

onditions for a fatorized stationary state, there would still be some hoies of rates
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u(m,n) whih yield pair-fatorized states. However it was shown in [26℄ that this is not

the ase. Therefore the misanthrope proess either has a fatorized stationary state or

the stationary state has some unknown struture.

Here we onsider a generalisation of the misanthrope proess similar to the

generalisation of the zero-range proess reviewed in Setion 3. That is, we onsider

a Misanthrope-like model with stohasti disrete-time parallel dynamis where all

partiles attempt hops at disrete time steps. Suh parallel dynamis are often employed

in models of vehiular tra� and pedestrian dynamis [32℄. Our aim is determine how

the struture of the stationary state is modi�ed. It turns out that we need to onsider

pair fatorization for the steady state probability.

The dynamis we onsider generalise the misanthrope proess in two ways. First

masses move at disrete timesteps therefore there an be simultaneous transport of mass

at di�erent loations. Seond, more than one unit of mass an be transferred from site

i to i+ 1.

More preisely, in eah time step, some number µi of partiles depart from site i and

move to site i+1 with probability φ(µi|mi, mi+1). Clearly, we must have φ(µ|m,n) = 0

for µ > m and for onservation of probability we require

∑m

µ=0 φ(µ|m,n) = 1. Following

[19℄ we will refer to φ(µ|m,n) as the hipping kernel.

One would like to know whether there is a neessary and su�ient ondition on

φ(µ|m,n) for the steady state P (m1, . . . , mL) to fatorize over pairs of neighbouring

sites. This means that the following equation must be ful�lled:

L
∏

i=1

g(mi, mi+1) =
∑

µ1,...,µL

L
∏

i=1

φ(µi|mi + µi − µi−1, mi+1 + µi+1 − µi)

× g(mi + µi − µi−1, mi+1 + µi+1 − µi) . (37)

The left hand side of this equation gives the weight (unnormalized probability) of some

on�guration of mass in the system given by {mi}. The right hand side gives the

sum over the weights of possible on�gurations at the previous time step multiplied

by the transition probabilities to the on�guration {mi}. The sum over preeding

on�gurations is expressed as a sum over the masses, µi, transferred from i to i + 1.

Thus at the previous time step site i had mass mi + µi − µi−1. For a stationary state

the two sides of (37) must be equal.

We now laim that a hipping kernel of the form

φ(µ|m,n) =
u(µ)a(m− µ)b(n + µ)

g(m,n)
, (38)

where

g(m,n) =
m
∑

µ=0

u(µ)a(m− µ)b(n + µ), (39)

is su�ient for pair fatorization provided that some additional onstraint is imposed on

the funtions u(µ), a(m), b(n). Expression (38) implies a fatorization of the hipping

kernel into a fator u(µ) whih depends on the mass transferred, a fator a(m−µ) whih
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depends on the mass whih remains at the departure site and a fator b(n + µ) whih

depends on the resulting mass at the destination site.

To demonstrate that the form (38) indeed leads to pair-fatorized stationary state,

let us insert (38) into the stationarity ondition Eq. (37). Rearranging indies we obtain

∏

i

g(mi, mi+1) =
∑

{µi}

∏

i

(u(µi)a(mi − µi−1)b(mi+1 + µi+1))

=
∏

i

(

∑

µi

u(µi)a(mi+1 − µi)b(mi + µi)

)

=
∏

i

g(mi+1, mi) . (40)

In other words, for pair fatorization under the form (38) we require

∏

i

g(mi, mi+1)/g(mi+1, mi) = 1 . (41)

The most general solution to this equation assumes the form (for a proof see [26℄

Appendix A)

g(m,n) = g(n,m)
h(n)

h(m)
, (42)

where h(m) is some funtion whih an be determined by inserting n = 0 into the above

equation:

h(m) = h(0)
g(0, m)

g(m, 0)
. (43)

Finally, from (42) and (43) we obtain

g(m,n)g(0, m)g(n, 0) = g(n,m)g(m, 0)g(0, n) . (44)

Equation (44), in tandem with the de�nition (39), is the entral result of this setion

and gives a su�ient ondition for the stationary state of the generalised misanthrope

proess to take a pair-fatorized form. It implies onditions on u(µ), a(m), b(n) whih

we explore in the next setion. It remains an open problem as to whether Eq. (44) is

also a neessary ondition.

8.1. Single partile hopping

To simplify the disussion we we now fous on the misanthrope-like ase when at most

one partile an hop from a given site in eah timestep. For this purpose we take

u(µ) = δµ,0 +∆tδµ,1, and (39) yields

g(m,n) = a(m)b(n) + ∆ta(m− 1)b(n + 1). (45)

At this stage ∆t is a parameter but as we shall verify later the limit ∆t → 0 redues to

the usual ontinuous time misanthrope proess. We will derive now the relation between
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a(m) and b(m) for arbitrary ∆t > 0. Inserting (45) in ondition (44) leads, after some

algebra, to

b̃(0)− b̃(m)

ã(m)
−∆tb̃(0)b̃(m) =

b̃(0)− b̃(n)

ã(n)
−∆tb̃(0)b̃(n), (46)

where we have de�ned

ã(m) = a(m− 1)/a(m), (47)

b̃(m) = b(m+ 1)/b(m). (48)

The left and right side of equation (46) are funtions of m and n, respetively. In order

for (46) to be valid for any m, n, both sides of the above equation must be equal to a

onstant k. This gives

b̃(m) =
b̃(0)− 1

k
ã(m)

1 + ∆tb̃(0)ã(m)
(49)

or, equivalently,

ã(m) = k
b̃(0)− b̃(m)

1 + k∆tb̃(0)b̃(m)
. (50)

Therefore, ã(m) is determined by b̃(m) and vie versa, up to two parameters k and ∆t.

The hipping probability φ(1|m,n) an then be expressed as

φ(1|m,n) = k∆tb̃(n)
b̃(0)− b̃(m)

1 + k∆t(b̃(m)b̃(0) + b̃(n)b̃(0)− b̃(m)b̃(n))
, (51)

and beause the hopping probability de�nes the model, all stati and dynamial

properties are fully spei�ed by giving k,∆t and one of the two funtions ã(m) or b̃(m).

The pairwise weight funtion g(m,n) is given by Eq. (45), with a(m), b(n) alulated

reursively:

a(m) =
m
∏

i=1

1

ã(i)
, b(n) =

n
∏

i=1

b̃(i− 1), (52)

where we assumed for onveniene that a(0) = b(0) = 1. This assumption is made

without loss of generality as it only resales g(m,n) by a onstant fator.

In the limit ∆t → 0, we obtain fatorization of the steady state, sine (45) tends

to g(m,n) = a(m)b(n) orresponding to a single-site weight f(m) = a(m)b(m). The

hipping probability beomes

φ(1|m,n) = ∆t ã(m)b̃(n) +O(∆t2), (53)

and in the ontinuous time limit ∆t → 0 this redues to a hopping rate

u(m,n) = ã(m)b̃(n), (54)

whereas ondition (46) redues to

b̃(0)− b̃(m)

ã(m)
=

b̃(0)− b̃(n)

ã(n)
, (55)

whih is equivalent to the ondition (13) for the misanthrope proess.
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8.2. Condition for ondensation

In this setion we shall outline how the above disrete-time misanthrope proess with

fatorized hopping probability exhibits ondensation above some ritial density of

partiles. We shall learn, perhaps not surprisingly, that the onditions on the hopping

probability φ(1|m,n) are somewhat similar to those for the hopping rate u(m,n) in the

ontinuous time ase.

We begin by de�ning the grand-anonial partition funtion

G(z) =
∑

{mi}

z
∑

i miW ({mi}), (56)

where the steady-state weights reads

W ({mi}) =
L
∏

i=1

g(mi, mi+1)

=

L
∏

i=1

[a(mi)b(mi+1) + ∆ta(mi − 1)b(mi+1 + 1)] . (57)

We now observe that the expression in square brakets in Eq. (57) an be viewed as a

produt of two vetors:

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)

, (58)

and hene the steady-state weight an be rewritten as

W ({mi}) =
L
∏

i=1

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)

= Tr

[

L
∏

i=1

(a(mi) + ∆ta(mi − 1))

(

b(mi+1)

b(mi+1 + 1)

)]

= Tr

[

L
∏

i=1

(

b(mi)

b(mi + 1)

)

(a(mi) + ∆ta(mi − 1))

]

= Tr

[

L
∏

i=1

(

a(mi)b(mi) ∆ta(mi − 1)b(mi)

a(mi)b(mi + 1) ∆ta(mi − 1)b(mi + 1)

)]

, (59)

where in the penultimate step we have ylially permuted the vetors under the trae

and in the last step evaluated the resulting dyadi produt. The grand-anonial

partition funtion beomes

G(z) = Tr
[

A(z)L
]

, (60)

where A(z) is a 2× 2 matrix:

A(z) =

(

∑

m a(m)b(m)zm ∆t
∑

m a(m− 1)b(m)zm
∑

m a(m)b(m + 1)zm ∆t
∑

m a(m− 1)b(m+ 1)zm

)

. (61)
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The above matrix has two eigenvalues

λ±(z) =
1

2

(

A11(z) + A22(z)±
√

(A11(z)− A22(z))2 + 4A12(z)A21(z)
)

,(62)

where Aij is an element of (61). Sine λ+ is always greater than λ−, provided that z > 0,

lnG(z) ∼= L lnλ+ for large system size L, and we obtain that, in the thermodynami

limit, the density-fugaity relation is given by

ρ(z) = z
λ

′

+(z)

λ+(z)
. (63)

Sine ρ(z) is an inreasing funtion of z, ondensation will our if ρ(z) tends to a �nite

value as z approahes its maximum allowed value. This maximum allowed value is zc
� the radius of onvergene of λ+(z). From Eqs. (62) and (61) we see that the radius

of onvergene of λ+(z) is the radius of onvergene of any of the four entries of A(z).

If we fous, say, on A11(z), we see that ondensation riteria redue to the onvergene

properties of the sum

∑

m a(m)b(m)zm. Hene, ondensation is possible if

f̃(m) = a(m)b(m) (64)

behaves in one of two ways desribed earlier i.e. here f̃(m) plays the same role as the

single-site weight f(m) in setion 1 ases I, II.

9. Disussion

In this paper we have given a short review of ondensation in fatorized and pair-

fatorized states. In partiular we have disussed the misanthrope proess where the hop

rates u(mi, mi+1) depend on the oupany of both the departure site i and destination

site i+ 1. This proess provides a new route to the standard ondensation senario for

the ase of inreasing hop rate u(m,n) ∼ mγnγ
for γ > 2.

The dynamis of this new �explosive ondensation� has been explored in detail

in Refs. [27, 26℄. Interestingly, explosive ondensation shows some parallels to

instantaneous gelation observed in luster-luster aggregation models [33, 34, 35, 36℄,

a lass of models used to study gelation (see Ref. [37℄ for a review). We refer the

reader to Ref. [26℄ for a more thorough disussion; here we will only mention it brie�y.

Instantaneous gelation ours when lusters of partiles of sizes m,n merge irreversibly

with rate ∼ mµnν + nµmν
and when µ + ν > 1 and the bigger of the exponents µ, ν

is greater than one. In this ase, gelation i.e. the proess of forming a single large

luster ours instantaneously in the thermodynami limit. More spei�ally, the time to

gelation dereases to zero with inreasing total mass (size) of the system. Instantaneous

gelation also ours in exhange driven growth [36℄ in whih partiles are transferred

between lusters at a rate ∼ mµnν+nµmν
. Here the ondition for instantaneous gelation

is that the larger of the two exponents γ = max(µ, ν) > 2; the time to gelation dereases

as ∼ (lnL)−(γ−2)
. This is quantitatively di�erent to explosive ondensation, in whih

the time to ondensation sales as ∼ (lnL)−(γ−1)
, despite the fat that the dynamis of

both models is qualitatively very similar.
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We also have studied a generalisation of the misanthrope proess to a parallel

disrete time updating sheme in whih simultaneous transfer of mass at di�erent

loations an our. We have shown that onditions exist for the stationary state

to take a pair-fatorized form. These onditions generalize the onditions (12,13) for

fatorization in the ontinuous time ase. Thus the ontinuous time fatorized stationary

state is modi�ed into a pair-fatorized state when disrete time dynamis are onsidered.

This ontrasts with the zero-range proess in whih a fatorized form is maintained under

disrete time updating.

A major open question whih remains is the struture of the misanthrope proess

stationary state for general hopping rates. Also it would be of interest to generalise the

onditions for fatorization and pair fatorization in the misanthrope proess to more

general geometries than the one-dimensional periodi hain.
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