164 research outputs found

    Bird impact analysis package for turbine engine fan blades

    Get PDF
    For abstract see A82-3016

    Component-specific modeling

    Get PDF
    The ability to accurately structurally analyze engine components to assure that they can survive for their designed lifetime in an increasingly harsh environment is discussed. Under the HOST (HOt Section Technology) program, advanced component-specific modeling methods, with built-in analysis capability, will be developed separately for burner liners, turbine blades and vanes. These modeling methods will make maximum use of, but will not rely solely on, existing analysis methods and techniques, to analyze the three identified components. Nor will the complete structural analysis of a component necessarily be performed as a single analysis. The approach to be taken will develop complete software analysis packages with internal, component-specific, self-adaptive solution strategies. Each package will contain a set of modeling and analysis tools. The selection and order of specific methods and techniques within the set to be applied will depend on the specific-component, the current thermo-mechanical loading, and the current state of the component. All modeling and analysis decisions will be made internally based on developed decision criteria within the solution strategies; minimal user intervention will be required

    STAEBL: Structural tailoring of engine blades, phase 2

    Get PDF
    The Structural Tailoring of Engine Blades (STAEBL) program was initiated at NASA Lewis Research Center in 1980 to introduce optimal structural tailoring into the design process for aircraft gas turbine engine blades. The standard procedure for blade design is highly iterative with the engineer directly providing most of the decisions that control the design process. The goal of the STAEBL program has been to develop an automated approach to generate structurally optimal blade designs. The program has evolved as a three-phase effort with the developmental work being performed contractually by Pratt & Whitney Aircraft. Phase 1 was intended as a proof of concept in which two fan blades were structurally tailored to meet a full set of structural design constraints while minimizing DOC+I (direct operating cost plus interest) for a representative aircraft. This phase was successfully completed and was reported in reference 1 and 2. Phase 2 has recently been completed and is the basis for this discussion. During this phase, three tasks were accomplished: (1) a nonproprietary structural tailoring computer code was developed; (2) a dedicated approximate finite-element analysis was developed; and (3) an approximate large-deflection analysis was developed to assess local foreign object damage. Phase 3 is just beginning and is designed to incorporated aerodynamic analyses directly into the structural tailoring system in order to relax current geometric constraints

    Stability of large horizontal-axis axisymmetric wind turbines

    Get PDF
    The stability of large horizontal axis, axi-symmetric, power producing wind turbines was examined. The analytical model used included the dynamic coupling of the rotor, tower and power generating system. The aerodynamic loading was derived from blade element theory. Each rotor blade was permitted tow principal elastic bending degrees of freedom, one degree of freedom in torsion and controlled pitch as a rigid body. The rotor hub was mounted in a rigid nacelle which may yaw freely or in a controlled manner. The tower can bend in two principal directions and may twist. Also, the rotor speed can vary and may induce perturbation reactions within the power generating equipment. Stability was determined by the eigenvalues of a set of linearized constant coefficient differential equations. All results presented are based on a 3 bladed, 300 ft. diameter, 2.5 megawatt wind turbine. Some of the parameters varied were; wind speed, rotor speed structural stiffness and damping, the effective stiffness and damping of the power generating system and the principal bending directions of the rotor blades. Unstable or weakly stable behavior can be caused by aerodynamic forces due to motion of the rotor blades and tower in the plane of rotation or by mechanical coupling between the rotor system and the tower

    Structural dynamics of shroudless, hollow fan blades with composite in-lays

    Get PDF
    Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade

    Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance

    Get PDF
    The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability

    In This Edition

    Get PDF

    Structural and aeroelastic analysis of the SR-7L propfan

    Get PDF
    A structural and aeroelastic analysis of a large scale advanced turboprop rotor blade is presented. This 8-blade rotor is designed to operate at Mach 0.8 at an altitude of 35,000 ft. The blades are highly swept and twisted and of spar/shell construction. Due to the complexity of the blade geometry and its high performance, it is subjected to much higher loads and tends to be much less stable than conventional blades. Four specific analyses were conducted: (1) steady deflection; (2) natural frequencies and mode shapes; (3) steady stresses; and (4) aeroelastic stability. State-of-the-art methods were used to analyze the blades including a large deflection, finite element structural analysis, and an aeroelastic analysis including interblade aerodynamic coupling (cascade effects). The study found the blade to be structurally sound and aeroelastically stable. However, it clearly indicated that advanced turboprop blades are much less robust than conventional blades and must be analyzed and fabricated much more carefully in order to assure that they are structurally sound and aeroelastically stable

    Toward an Operational Definition of Islamophobia

    Get PDF
    Abstract concepts such as Islamophobia invite operational definitions that prescribe courses of inquiry that eschew the abstract in favor of the concrete. Ideally, such inquiry renders a concept more intelligible by providing conceptual clarity and by prescribing a research agenda. In our view, inquiries regarding Islamophobia should confront 1) how Muslims are identified, or misidentified, 2) whether Islamophobia is a phobia, prejudice, or both, and 3) how Islamophobia must be narrated
    corecore