12,509 research outputs found
Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study
Dynamic Hubbard models have been proposed as extensions of the conventional
Hubbard model to describe the orbital relaxation that occurs upon double
occupancy of an atomic orbital. These models give rise to pairing of holes and
superconductivity in certain parameter ranges. Here we explore the changes in
carrier effective mass and quasiparticle weight and in one- and two-particle
spectral functions that occur in a dynamic Hubbard model upon pairing, by exact
diagonalization of small systems. It is found that pairing is associated with
lowering of effective mass and increase of quasiparticle weight, manifested in
transfer of spectral weight from high to low frequencies in one- and
two-particle spectral functions. This 'undressing' phenomenology resembles
observations in transport, photoemission and optical experiments in high T_c
cuprates. This behavior is contrasted with that of a conventional electron-hole
symmetric Holstein-like model with attractive on-site interaction, where
pairing is associated with 'dressing' instead of 'undressing'
Determining R-parity violating parameters from neutrino and LHC data
In supersymmetric models neutrino data can be explained by R-parity violating
operators which violate lepton number by one unit. The so called bilinear model
can account for the observed neutrino data and predicts at the same time
several decay properties of the lightest supersymmetric particle. In this paper
we discuss the expected precision to determine these parameters by combining
neutrino and LHC data and discuss the most important observables. We show that
one can expect a rather accurate determination of the underlying R-parity
parameters assuming mSUGRA relations between the R-parity conserving ones and
discuss briefly also the general MSSM as well as the expected accuracies in
case of a prospective e+ e- linear collider. An important observation is that
several parameters can only be determined up to relative signs or more
generally relative phases.Comment: 13 pages, 13 figure
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Electronic dynamic Hubbard model: exact diagonalization study
A model to describe electronic correlations in energy bands is considered.
The model is a generalization of the conventional Hubbard model that allows for
the fact that the wavefunction for two electrons occupying the same Wannier
orbital is different from the product of single electron wavefunctions. We
diagonalize the Hamiltonian exactly on a four-site cluster and study its
properties as function of band filling. The quasiparticle weight is found to
decrease and the quasiparticle effective mass to increase as the electronic
band filling increases, and spectral weight in one- and two-particle spectral
functions is transfered from low to high frequencies as the band filling
increases. Quasiparticles at the Fermi energy are found to be more 'dressed'
when the Fermi level is in the upper half of the band (hole carriers) than when
it is in the lower half of the band (electron carriers). The effective
interaction between carriers is found to be strongly dependent on band filling
becoming less repulsive as the band filling increases, and attractive near the
top of the band in certain parameter ranges. The effective interaction is most
attractive when the single hole carriers are most heavily dressed, and in the
parameter regime where the effective interaction is attractive, hole carriers
are found to 'undress', hence become more like electrons, when they pair. It is
proposed that these are generic properties of electronic energy bands in solids
that reflect a fundamental electron-hole asymmetry of condensed matter. The
relation of these results to the understanding of superconductivity in solids
is discussed.Comment: Small changes following referee's comment
Superconductivity from Undressing
Photoemission experiments in high cuprates indicate that quasiparticles
are heavily 'dressed' in the normal state, particularly in the low doping
regime. Furthermore these experiments show that a gradual undressing occurs
both in the normal state as the system is doped and the carrier concentration
increases, as well as at fixed carrier concentration as the temperature is
lowered and the system becomes superconducting. A similar picture can be
inferred from optical experiments. It is argued that these experiments can be
simply understood with the single assumption that the quasiparticle dressing is
a function of the local carrier concentration. Microscopic Hamiltonians
describing this physics are discussed. The undressing process manifests itself
in both the one-particle and two-particle Green's functions, hence leads to
observable consequences in photoemission and optical experiments respectively.
An essential consequence of this phenomenology is that the microscopic
Hamiltonians describing it break electron-hole symmetry: these Hamiltonians
predict that superconductivity will only occur for carriers with hole-like
character, as proposed in the theory of hole superconductivity
Microscopic mass estimations
The quest to build a mass formula which have in it the most relevant
microscopic contributions is analyzed. Inspired in the successful Duflo-Zuker
mass description, the challenges to describe the shell closures in a more
transparent but equally powerful formalism are discussed.Comment: 14 pages, 6 figures, submitted to Journal of Physics G, Focus issue
on Open Problems in Nuclear Structure Theor
Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider
The lightest supersymmetric particle may decay with branching ratios that
correlate with neutrino oscillation parameters. In this case the CERN Large
Hadron Collider (LHC) has the potential to probe the atmospheric neutrino
mixing angle with sensitivity competitive to its low-energy determination by
underground experiments. Under realistic detection assumptions, we identify the
necessary conditions for the experiments at CERN's LHC to probe the simplest
scenario for neutrino masses induced by minimal supergravity with bilinear R
parity violation.Comment: 11 pages, 6 figures. To appear in Physical Review
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
Functional co-monotony of processes with applications to peacocks and barrier options
We show that several general classes of stochastic processes satisfy a
functional co-monotony principle, including processes with independent
increments, Brownian diffusions, Liouville processes. As a first application,
we recover some recent results about peacock processes obtained by Hirsch et
al. which were themselves motivated by a former work of Carr et al. about the
sensitivity of Asian Call options with respect to their volatility and residual
maturity (seniority). We also derive semi-universal bounds for various barrier
options.Comment: 27 page
- …