18,548 research outputs found

    3.8 Psychrophilic Myxobacteria from Antarctic Soils

    Get PDF

    Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model

    Full text link
    A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numerical techniques. The model is one in the class of dynamicdynamic HubbardHubbard modelsmodels that describe the relaxation of an atomic orbital upon double electron occupancy due to electron-electron interactions. We study the parameter regime where pairing occurs in this model by exact diagonalization of small clusters. World line quantum Monte Carlo simulations support the results of exact diagonalization for larger systems and show that kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class, obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results confirm the expected qualitative behavior, and show that pairing will occur in a substantially larger parameter regime than predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published in Phys.Rev.

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the μ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Exotic coloured fermions and lepton number violation at the LHC

    Full text link
    Majorana neutrino mass models with a scale of lepton number violation (LNV) of order TeV potentially lead to signals at the LHC. Here, we consider an extension of the standard model with a coloured octet fermion and a scalar leptoquark. This model generates neutrino masses at 2-loop order. We make a detailed MonteCarlo study of the LNV signal at the LHC in this model, including a simulation of standard model backgrounds. Our forecast predicts that the LHC with 300/fb should be able to probe this model up to colour octet fermion masses in the range of (2.6-2.7) TeV, depending on the lepton flavour of the final state.Comment: 14 pages, 2 figure

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Microscopic mass estimations

    Full text link
    The quest to build a mass formula which have in it the most relevant microscopic contributions is analyzed. Inspired in the successful Duflo-Zuker mass description, the challenges to describe the shell closures in a more transparent but equally powerful formalism are discussed.Comment: 14 pages, 6 figures, submitted to Journal of Physics G, Focus issue on Open Problems in Nuclear Structure Theor

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    Study of a Neutrino Mass Texture Generated in Supergravity with Bilinear R-Parity Violation

    Full text link
    We study a particular texture of the neutrino mass matrix generated in supergravity with bilinear R-Parity violation. The relatively high value of tanβ\tan\beta makes the one-loop contribution to the neutrino mass matrix as important as the tree-level one. The atmospheric angle is nearly maximal, and its deviation from maximal mixing is related to the smallness of the ratio between the solar and atmospheric mass scales. There is also a common origin for the small values of the solar and reactor angles, but the later is much smaller due the large mass ratio between the lightest two neutrinos. There is a high dependence of the neutrino mass differences on the scalar mass m0m_0 and the gaugino mass M1/2M_{1/2}, but a smaller one of the mixing angles on the same sugra parameters. Measurements of branching ratios for the neutralino decays can give important information on the parameters of the model. There are good prospects at a future Linear Collider for these measurements, but a more detailed analysis is necessary for the LHC.Comment: 21 pages, 9 figure

    Production and decays of supersymmetric Higgs bosons in spontaneously broken R-parity

    Get PDF
    We study the mass spectra, production and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R-parity (SBRP). We compare the resulting mass spectra with expectations of the Minimal Supersymmetric Standard Model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the "associated production". The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizeable.Comment: 21 pages, 8 figures; minor changes, final version for publicatio
    corecore