25,571 research outputs found
Study of the vortex conditions of wings with large sweepback by extrapolation of the Jones method
The pockets of separation originating on the leading edges are surrounded by vortex sheets. Their configuration and intensity were determined by four conditions with the JONES approximation, which is itself corrected by a simple logic. Field pressures and stresses were computed for different cases and are compared with test results (pure deltas, swallow tails, truncations, strakes, ducks, fuselage)
Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study
Dynamic Hubbard models have been proposed as extensions of the conventional
Hubbard model to describe the orbital relaxation that occurs upon double
occupancy of an atomic orbital. These models give rise to pairing of holes and
superconductivity in certain parameter ranges. Here we explore the changes in
carrier effective mass and quasiparticle weight and in one- and two-particle
spectral functions that occur in a dynamic Hubbard model upon pairing, by exact
diagonalization of small systems. It is found that pairing is associated with
lowering of effective mass and increase of quasiparticle weight, manifested in
transfer of spectral weight from high to low frequencies in one- and
two-particle spectral functions. This 'undressing' phenomenology resembles
observations in transport, photoemission and optical experiments in high T_c
cuprates. This behavior is contrasted with that of a conventional electron-hole
symmetric Holstein-like model with attractive on-site interaction, where
pairing is associated with 'dressing' instead of 'undressing'
Electronic dynamic Hubbard model: exact diagonalization study
A model to describe electronic correlations in energy bands is considered.
The model is a generalization of the conventional Hubbard model that allows for
the fact that the wavefunction for two electrons occupying the same Wannier
orbital is different from the product of single electron wavefunctions. We
diagonalize the Hamiltonian exactly on a four-site cluster and study its
properties as function of band filling. The quasiparticle weight is found to
decrease and the quasiparticle effective mass to increase as the electronic
band filling increases, and spectral weight in one- and two-particle spectral
functions is transfered from low to high frequencies as the band filling
increases. Quasiparticles at the Fermi energy are found to be more 'dressed'
when the Fermi level is in the upper half of the band (hole carriers) than when
it is in the lower half of the band (electron carriers). The effective
interaction between carriers is found to be strongly dependent on band filling
becoming less repulsive as the band filling increases, and attractive near the
top of the band in certain parameter ranges. The effective interaction is most
attractive when the single hole carriers are most heavily dressed, and in the
parameter regime where the effective interaction is attractive, hole carriers
are found to 'undress', hence become more like electrons, when they pair. It is
proposed that these are generic properties of electronic energy bands in solids
that reflect a fundamental electron-hole asymmetry of condensed matter. The
relation of these results to the understanding of superconductivity in solids
is discussed.Comment: Small changes following referee's comment
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Prevalent Behavior of Strongly Order Preserving Semiflows
Classical results in the theory of monotone semiflows give sufficient
conditions for the generic solution to converge toward an equilibrium or
towards the set of equilibria (quasiconvergence). In this paper, we provide new
formulations of these results in terms of the measure-theoretic notion of
prevalence. For monotone reaction-diffusion systems with Neumann boundary
conditions on convex domains, we show that the set of continuous initial data
corresponding to solutions that converge to a spatially homogeneous equilibrium
is prevalent. We also extend a previous generic convergence result to allow its
use on Sobolev spaces. Careful attention is given to the measurability of the
various sets involved.Comment: 18 page
Occupation numbers in Self Consistent RPA
A method is proposed which allows to calculate within the SCRPA theory the
occupation numbers via the single particle Green function. This scheme complies
with the Hugenholtz van Hove theorem. In an application to the Lipkin model it
is found that this prescription gives consistently better results than two
other commonly used approximations: lowest order boson expansion and the number
operator method.Comment: 25 pages, 10 figures, submitted to Nucl. Phys.
Superconductivity from Undressing
Photoemission experiments in high cuprates indicate that quasiparticles
are heavily 'dressed' in the normal state, particularly in the low doping
regime. Furthermore these experiments show that a gradual undressing occurs
both in the normal state as the system is doped and the carrier concentration
increases, as well as at fixed carrier concentration as the temperature is
lowered and the system becomes superconducting. A similar picture can be
inferred from optical experiments. It is argued that these experiments can be
simply understood with the single assumption that the quasiparticle dressing is
a function of the local carrier concentration. Microscopic Hamiltonians
describing this physics are discussed. The undressing process manifests itself
in both the one-particle and two-particle Green's functions, hence leads to
observable consequences in photoemission and optical experiments respectively.
An essential consequence of this phenomenology is that the microscopic
Hamiltonians describing it break electron-hole symmetry: these Hamiltonians
predict that superconductivity will only occur for carriers with hole-like
character, as proposed in the theory of hole superconductivity
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Excited bands in odd-mass rare-earth nuclei
Normal parity bands are studied in 157Gd, 163Dy and 169Tm using the pseudo
SU(3) shell model. Energies and B(E2) transition strengths of states belonging
to six low-lying rotational bands with the same parity in each nuclei are
presented. The pseudo SU(3) basis includes states with pseudo-spin 0 and 1, and
1/2 and 3/2, for even and odd number of nucleons, respectively. States with
pseudo-spin 1 and 3/2 must be included for a proper description of some excited
bands.Comment: 8 pages, 6 figures, Submitted to Phys. Rev.
Learning Blind Motion Deblurring
As handheld video cameras are now commonplace and available in every
smartphone, images and videos can be recorded almost everywhere at anytime.
However, taking a quick shot frequently yields a blurry result due to unwanted
camera shake during recording or moving objects in the scene. Removing these
artifacts from the blurry recordings is a highly ill-posed problem as neither
the sharp image nor the motion blur kernel is known. Propagating information
between multiple consecutive blurry observations can help restore the desired
sharp image or video. Solutions for blind deconvolution based on neural
networks rely on a massive amount of ground-truth data which is hard to
acquire. In this work, we propose an efficient approach to produce a
significant amount of realistic training data and introduce a novel recurrent
network architecture to deblur frames taking temporal information into account,
which can efficiently handle arbitrary spatial and temporal input sizes. We
demonstrate the versatility of our approach in a comprehensive comparison on a
number of challening real-world examples.Comment: International Conference on Computer Vision (ICCV) (2017
- …
