STUDY OF THE VORTEX CONDITIONS OF WINGS WITH LARGE SWEEPBACK BY EXTRAPOLATION OF THE JONES METHOD
P. Hirsch

LIBRARY COPY
 DECO 1980
 LANGLEY RESEAROH CENTER
 LIBRZARY, NASA
 hampton, VIreInu

Translation of "Essai d'étude du régime tourbillonnaire des ailes de forte flèche par extrapolation de la méthode de Jones," 16th Symposium of Applied Aerodynamics, Lille, November 13,14 and 151979

1. Report No. $T M-75863$	2. Govornment Accossion No.	3. Recipient's Catolog No.
4. Titlo and Subritle. STUDY OF THE VORTEX CONDITIONS OF WINGS WITH LARGE SWEEPBACK BY EXTRAPOLATION OF THE JONES METHOD		5. Report Date December 1980 6. Performing Organization Code
7. Author(s) P. Hirsch		8. Perlorming Organization Report No.
9. Performing Organization Name and Address Leo Kanner Associates Redwood City, Ca. 94063		11. Contract or Grant No. NASW-3199 13. Type of Report and Period Covered Translation
12. Sponsoring Agency Name ond Address National Aeronautics and Space Administration, Washington, D.C. 20546		14. Sponsoring Ageney Code
15. Supplementary Notes Translation of "Essai d'étude du régime tourbillonnaire des ailes de forte flèche par extrapolation de la méthode de Jones," 16th Symposium of Applied Aerodynamics, Lille, November 13, 14 and 151979.		
16. Abstract The pockets of separation originating on the leading edges are surrounded by vortex sheets. Their configuration and intensity are determined by four conditions with the - JONES approximation, which is itself corrected by a simple logic. Field pressures and stresses are computed for different cases and are compared with the test (pure deltas, swallow tails, truncations, "strakes", ettcks, fuselage). canards		
17. Key Words (Selected by Author(s))	18. Distribution Unclas	tement ified-Unlimited
19. Security Clossif. (of this repart) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages ${ }^{\text {22. Price }}$

STUDY OF THE VORTEX CONDITIONS OF WINGS WITH LARGE SWEEPBACK BY EXTRAPOLATION OF THE JONES METHOD
P. Kirsch

SUMMARY

The pockets of separation originating on the leading edges are surrounded by vortex sheets.

Their configuration and intensity are determined by four conditions with the JONES approximation, which is itself corrected by a simple logic.

Field pressures and stresses are computed for different cases and are compared with the test (pure deltas, swallow tails, truncations, "strakes", ducks, fuselage).
canards

1 - INTRODUCTION

An increase in the angle of a strongly swept-back wing results in the formation of a pocket of twisting separation upon the leading edge.

The contact between sound fluid and the separated zone thus produces vortex surfaces which wind around in horn pattern upon the base of leading edges.

An attempt is made here to give an approximation of the whenomenon by using diagrams and simplified calculation assumptions based on the traditional JONES approximation.

Let us briefly review the principles:
Upon a strongly swept-back wing, the variation of flows along the longitudinal coordinate x is slow compared to their variatimon relative to the transverse coordinates y and z. In the
*Numbers in the margin indicate pagination in the foreign text.
condition of continuity, it follows that the derivative u_{x}^{\prime} is smaller than derivatives $v_{y}^{\prime}, w_{z}^{\prime} \quad$.

In a first approximation, the flows in v and w, in each transverse section, are almost independent from what occurs in the other sections and are influenced very little by the presence of longitudinal component u.

Here, under the same assumptions, the transverse diagram will correspond to that shown on figures 1 and la which define the annotations of the configuration.

The pockets of separation are assumed to be of circular section. Inside the pocket, components v and will be zero: the vortex boundary is therefore the line of jet and the angular vortex density $\partial r^{*} / \partial \theta$. of radius \dot{r} which forms the boundary with the external flow will be constant.

Between the two pockets of separation, the linear circulation density of the vortex components connected to the wing will be $\partial r_{1} / \partial y^{\circ}$
Γ^{*} and $\Gamma_{1}(y)$ will be functions of x which must be defined. 2 - CONDITIONS

The first condition to observe is that of the relative slip on the wing assumed here to be flat.

Since w is the component induced by the vortex system matching the conditions of JONES, and i the angle, we must have

$$
i=w / v_{0}
$$

with:

$$
w(y)=\frac{1}{2 \pi}\left[-\Gamma^{+}\left\{\frac{b / 2-y}{(b / 2-y)^{2}+r^{2}}+\frac{b / 2+y}{(b / 2+y)^{2}+r^{2}}\right\}+\sum_{j} \delta_{1 j} \frac{2 y_{j}}{y^{2}-y_{j}^{2}}\right]
$$

To define the parameters of the problem, let us set:

$$
\frac{\Gamma_{1 j}}{2 \pi_{0} V_{1 ; i} i}=\delta \gamma_{1 \dot{j}}, \frac{\Gamma^{*}}{2 \pi V_{0} \sigma_{1 / 2}^{\prime} i}=\gamma^{*}, \quad \zeta=\frac{y}{\sigma_{j} / 2}, \zeta_{j}=\frac{y_{j}}{\sigma_{1} / 2} .
$$

The configuration of the system will therefore depend on parameter

$$
\mu=\frac{r}{G_{1}^{\prime} / 2}
$$

where

$$
\bar{b}_{1}=\bar{b}_{1}^{\prime}(1-k) \quad \text { and } \quad \sigma_{1}=\bar{b} \frac{1-2 k}{1-k}
$$

The relationship above becomes:

$$
\begin{equation*}
-\gamma^{*}\left\{\frac{1-\mu-\zeta}{(1-\mu-\zeta)^{2}+\mu^{2}}+\frac{1-\mu+\zeta}{(1-\mu+\zeta)^{2}+\mu^{2}}\right\}+\sum_{j} \delta \gamma_{j-}^{2}\left(\zeta_{j}\right) \frac{2 \zeta_{j}}{\zeta-\zeta_{j}}=1 \tag{1}
\end{equation*}
$$

This is a functional relationship defining γ^{+}and $\int_{i j}$ for \mathcal{A} given. The solution is easier by using a small computer, HP97, for example.

For $0<\mu<0.4$, we thus find that $\gamma_{1}(y)$ varies little relative to ' y and is expressed by the relationship of
condensation:

Simultaneous fy:

$$
\left.\begin{array}{l}
\gamma_{1} \approx 1,2\left[0,2+\mu^{2}\right] \tag{2}\\
\gamma^{k} \cong 1,2[0,2+\mu(0,8-\mu)]
\end{array}\right\}
$$

The slopes of x of quantities $\bar{b}_{0}, \bar{b}, \bar{b}_{1}, \bar{b}_{1}^{\prime}$ define locally $L 3$ the sweepback angles, such as:

The intensity of the vortex tube along its axis is $\Gamma=\Gamma^{*} / \sin \phi$.
The twist velocity at the contact of the tube in a plane perpendicular to the axis is $W_{0}=\Gamma / 2 \pi r$? at the contact of the wing.

Projected perpendicular to $O x$ it is $W=W_{0} \cdot \sin \phi$ such that $W=\Gamma_{2 \pi}^{*} / 2 r$ (fig.2).

If we assume N is the ratio between W_{0} and the potential incident component, here:

$$
V_{0} \cos \phi \cos \left(\phi-\phi_{0}\right) \cong V_{0} \cos \phi
$$

Therefore: $\Gamma=2 \pi \gamma N V_{0} \cos \phi, \quad$ which will be expressed with

$$
\begin{aligned}
\Gamma_{\pi} \sigma_{1}^{\prime} / 2 V_{0} i & =\gamma \\
\frac{\gamma^{*} i}{\mu \sin \phi} & =N \cos \gamma_{0}^{*}
\end{aligned}
$$

Let us now consider the distance δy between the leading edge of the wing and outline on the wing of the vortex tube axis, taken perpendicular to $O x$. Its slope will be:

$$
\begin{equation*}
\delta y_{x}^{\prime}=\frac{1}{\lg _{0}}-\frac{1}{\lg p} \tag{4}
\end{equation*}
$$

A vortex component which follows the outline of this tube on the wing surface is subjected to a drag velocity, perpendicular to
this outline is the half-resultant ${ }^{(*)}$ between $V_{0} \cos \phi$ coming from the external potential and:

$$
-W_{0}=-N V_{0} \cos \phi_{0}
$$

Therefore:

$$
\delta y_{t}^{\prime} \cong \frac{1}{2}\left[V_{0} \cos \phi-N V_{0} \cos \phi_{0}\right]
$$

In the axes related to $\quad 0 x, y=\delta y \sin \phi$,

$$
\delta_{t}^{\prime}=\left(\frac{b_{0}}{2}-\frac{\bar{b}_{2}}{2}\right)_{x}^{\prime} x_{t}^{\prime}=V_{0} y_{x}^{\prime}=V_{0}\left[\frac{1}{\hat{F}_{g} \phi_{0}}-\frac{1}{\lg \phi}\right]
$$

This gives us the relationship:

$$
\frac{1}{\operatorname{tg} \phi_{0}}-\frac{1}{\operatorname{tg} \phi}=\frac{1}{2} \sin \phi\left[\cos \phi-N \cos \phi_{0}\right]
$$

ice.:

$$
\begin{equation*}
N \cos \phi_{0}=\cos \phi+\frac{2}{\sin \phi}\left(\frac{1}{\operatorname{tg} \phi_{0}} \frac{1}{\operatorname{tg} \phi}\right) \tag{4}
\end{equation*}
$$

These are the conditions which define the configuration ϕ, μ, and ϕ_{1}, and the vortex intensities r_{1}, μ^{*}, when the angle i, sweepback ϕ_{0} and factor N • are defined.

The problem is solved easily by using mini-computers, such as the HP 97.

3 - CORRECTION FACTORS OF THE JONES APPROXIMATION
The approximation is in principle exactly applicable to the boundary condition where sweepback \oint_{0} reaches 90°.

It has two sources of error. The first results from the nonzero slope on the symmetry plane of the vortex lines. The second
(*) The velocity of the vortex component is half the sum of the external and internal velocities at the sheet, with the latter being equal to zero.
one is because the vortex lines do not reach infinity with a constant circulation intensity upstream and downstream the section under consideration, which is implicitly assumed in the JONES approximation.

For the first cause of error, we have seen that the circulation Γ^{*} taken in a plane perpendicular to the plane of symmetry is deduced from the circulation around the vortex tube perpendicular to its axis by the relationship $\Gamma^{*}=\Gamma \sin \phi(f i g .3)$

$$
\begin{aligned}
& \text { A point } M \text { of section } x \text { is subjected to an induced velocity } \\
& \begin{array}{r}
\Gamma_{2 \pi D} \text { with } D=d \sin \phi \quad \text { Expressed with } \Gamma^{*} \text { and } \phi: \\
W=\frac{\Gamma^{*}}{2 \pi d \sin ^{2} \phi}
\end{array}
\end{aligned}
$$

The correction factor $\sin ^{2} \phi$ thus appears in the condition of relative slip which defines

$$
\Gamma^{*}=2 \pi d \frac{w}{V_{0}} \cdot
$$

It may be compared with the results of the comparison between the calculation of lift performed at the ONERA with the rheoelectric tank and calculations with the JONES approximation for different sweepbacks:

\varnothing.	60°	70°	80°
ONERA correction factor	0.70	0.79	0.89
Sin $^{2} \varnothing$	0.75	0.88	0.97

Factor 1.2 is thus replaced in the expressions of γ^{*} and $\sum_{j} \delta_{j}$ by $1.2 \sin ^{2} \phi_{0}=\downarrow$.

In order to evaluate the effects of the second error of the JONES approximation, the effects of each section of a vortex tube with increasing linear radius and circulation from the apex to the leading odge (beyond the latter $\partial r^{\$} / \partial r$ is reduced to zero and
has no more effect). The results will be compared with those of the preceding formulas.

By carrying out this calculation, we have shown that the correction factor required is very close to one, except in the region near the trailing edge of the wing (0.85 to 1 of the central chord) where it drops to a limit value 0.5 , as suddenly as the sweepback is large.

4 - CHOICE of $\quad N=\begin{gathered}W \\ V_{0} \cos \phi_{0}\end{gathered}$

If the leading edge is pointed, the separation must appear with very small incidences: we must therefore find the value $N=N_{0}$ for these incidences resulting in a lift at least equal to that of the JONES theory corrected in $\sin ^{2} \phi$.

$$
\begin{aligned}
& \text { We thus find: } \begin{array}{ll}
N_{0} \cong 1,07 \quad 1,09 \\
& \text { for } \quad 55^{\circ}<\phi_{0}<80^{\circ}
\end{array},
\end{aligned}
$$

In the case of a wing which has a leading edge of curve $1 / \mathbb{R}$ of slope $y_{s}^{\prime}(0)$, the twisting velocity will be higher than for $\angle 6$ the previous case, hence: $\quad N>N_{0}$.

It is possible to evaluate the variation $N-N_{0}$ by applying relationships which define the tangential velocity of a profile at the leading edge relative to the velocity of the perpendicular component

$$
V_{0} \cos \phi_{0}
$$

Therefore:

$$
N_{-} N_{0} \cong 2 \sqrt{R / l}-11 y_{s_{0}} / R
$$

Here

$$
l=\frac{\bar{\sigma}_{0}}{\sin \phi_{0}} \quad \text { and } \quad R / l=\frac{1}{2}\left(\frac{e}{l}\right)^{2}
$$

They will be determined by applying the KUTTA law:

$$
\frac{d^{2} F}{d s}=\rho V d \Gamma
$$

V is the component of velocity perpendicular to the vortex stream on this point.

By assuming $q=\frac{\rho}{2} V_{0}^{2}$, the calculation leads to:
-The average pressure under the horn:

$$
\frac{\Delta b_{m}^{*}}{q}=\frac{2 \pi \gamma^{*} i}{\mu \operatorname{tg} \phi}
$$

-The pressure between

$$
\frac{\Delta p_{1}}{q}=\frac{8 \pi \gamma_{1} i}{\lg \phi_{1}}
$$

-and local pressures (fig. 4) under the horn.

$$
\frac{\Delta p^{*}}{q}=\frac{\Delta p_{m}^{*}}{q} x\left(\frac{1}{\operatorname{tg} \phi_{1}}-\frac{1}{\lg \phi_{1}}\right) f^{*}
$$

The function f^{*} is defined by:

$$
f^{*}=\int_{-\infty}^{\xi / r} \psi \cdot d(\xi / r)
$$

4 may be calculated point by point from the formulae of BIOT SAVART and KUTTA as a function of coordinate ξ / r centered on the prom jection of the vortex tube axis (Fig. 4).

Accordingly, the local stress is:

$$
\frac{1}{2 q} \cdot \frac{d R_{2}}{d x}=\frac{\Delta p_{m}^{*}}{q} \times\left[f^{*}\left(\frac{1}{\operatorname{tg} \phi_{1}}-\frac{1}{\operatorname{tg} \phi_{1}}\right)+\frac{1}{\operatorname{tg} \phi_{1}} \cdot \frac{\Delta p_{1}}{\Delta p_{m}^{*}}\right] .
$$

For a pure triangular Δ, we thus have with $S=$ wing surface:

$$
\frac{R_{2}}{q S}=\frac{C}{z}=\frac{\Delta p_{2 n}^{*}}{q}\left[\rho^{*}\left(\frac{1}{\operatorname{tg} \phi_{1}}-\frac{1}{\operatorname{tg} \phi_{1}}\right)+\frac{1}{\operatorname{tg} \phi_{1}} \cdot \frac{\Delta p_{1}}{\Delta p_{m}^{*}}\right] \operatorname{tg} \phi_{0}
$$

The moment around the apex will be here:
$\frac{1}{q S l} M(0)=h C_{2}$
where : $\quad 0.6<h<0.63$ for $\quad 60^{\circ}<\phi<75^{\circ} \quad . \quad(\rho=$ central chord $)$
6 - RESULTS OF CALCULATIONS AND COMPARISON WITH THE TEST

6.1 - Pure Delta

Programs solved by using the small HP97 computer have resulted in numerous applications.

Pl. 1 shows the results of comparisons between calculations and tests found in various publications (ONERA - AGARD).

The calculated configurations of vortex tubes place the axes of the latter inside the wing in the vicinity of the leading edges. The pressure fields are satisfactorily shown; the test shows that the peak decreases as we move closer to the leading edge.

For a sweepback of 75°, the calculation of $C_{z}(\alpha)$ decreases the slope after 15° of incidence, which is not shown by the tests.

6.2 -Special Wing Shapes

We were able to calculate the cases of small truncated and swallow tail wings.

P1. II provides the results and the comparison with the tests of BOBBIT and MONROE (wing of $71^{\circ} 2$) on pressure fields, lift and moment.

The diagrams of figure 5 show the principle of the calculations and the regions where pressure integrations must be found.

In the region formed by the swallow tail, the distribution of components $S \dot{r}_{\lambda}$ is the same as for the trailing edge of the wing.

Let us point out that the calculation also applies to a "negative" swallow tail: $\phi_{0}<0$.

6.3 - "Strake" and the Case of Multiple Sweepbacks

This is a difficult case because it must be shown that the horn-shaped vortices originating on the "strakes" and those on the downstream section of the wing are connected in position and intensity, which results in displacing the latter relative to their natural position. An additional intensity must be applied to them without modifying the condition of relative slip (Fig. 6).

Comparisons were possible only in cases where a fuselage was also present.
6.4 - Duck Canard

It was necessary to take into account the effects of inductance of the vortex tubes on the wake sheet of the duck downstream from the latter: the result was a deflection to the bottom of this sheet and a contraction of the tubes to the plane of symmetry. This effects the main wing and modifies, as for the case of the "strakes", the configuration of vortices of the main wing (Fig. 7).

By taking these precautions, it was possible to make satisfactory comparisons of the calculation - test (SAAB duek - P1. III).

6.5 - Fuselage

The first comparisons with the test showed that a fuselage with small diameter changed very little the results of a detached wing by giving it the surface of the total wing surface. On the other hand, in the case of a detached duck placed on a fuselage (i.e. a wing with small external surface compared to the total sur- 19 face - ONERA Test of EHRLICH) - the calculation based on only the outside surface coincided more with the test result.

These observations have shown that there is an effect related to the ratio of the wing span divided by the diameter of the fuselage squared (aspect ratios). This explains the introduction of an opera aton in $\left(D / 2 \rho \cdot \operatorname{Ig} \phi_{0}\right)^{i}$, with ℓ the wing chord, D the diameter of the fuselage, taken in the form:

$$
\left[1-\exp \left(-\frac{k}{\left(D / 2 \ell \cdot \operatorname{tg} \phi_{0}\right)^{2}}\right)\right]
$$

It moves to zero when $D / 2 e \cdot \lg \phi_{0} \rightarrow 0$ and assumes the value making it possible to verify the EHRLICH test, for

$$
K=0.18
$$

Plates IV, V, VI, and VII result from the application of these different calculation methods.

Figure 3

Figure 4

Figure 6

Percy, Bobbitt a Monroe.

$\triangle 60^{\circ}$ on fuselase ratio onesa 4/5026Ay

Airplane with ONERA duck canard
(Ehrlich)

+ calcul
$\left.\begin{array}{l}x \\ 0 \\ \text { i }\end{array}\right\} \begin{aligned} & \text { tess }\end{aligned}$

