360 research outputs found

    Untitled

    Get PDF

    Untitled

    Get PDF

    Trascending

    Get PDF

    In the Dungeon

    Get PDF

    Untitled

    Get PDF

    Untitled

    Get PDF

    Untitled

    Get PDF

    A Comparison of Spectroscopic versus Imaging Techniques for Detecting Close Companions to Kepler Objects of Interest

    Get PDF
    (Abbreviated) Kepler planet candidates require both spectroscopic and imaging follow-up observations to rule out false positives and detect blended stars. [...] In this paper, we examine a sample of 11 Kepler host stars with companions detected by two techniques -- near-infrared adaptive optics and/or optical speckle interferometry imaging, and a new spectroscopic deblending method. We compare the companion Teff and flux ratios (F_B/F_A, where A is the primary and B is the companion) derived from each technique, and find no cases where both companion parameters agree within 1sigma errors. In 3/11 cases the companion Teff values agree within 1sigma errors, and in 2/11 cases the companion F_B/F_A values agree within 1sigma errors. Examining each Kepler system individually considering multiple avenues (isochrone mapping, contrast curves, probability of being bound), we suggest two cases for which the techniques most likely agree in their companion detections (detect the same companion star). Overall, our results support the advantage the spectroscopic deblending technique has for finding very close-in companions (θ≲\theta \lesssim0.02-0.05") that are not easily detectable with imaging. However, we also specifically show how high-contrast AO and speckle imaging observations detect companions at larger separations (θ≥\theta \geq0.02-0.05") that are missed by the spectroscopic technique, provide additional information for characterizing the companion and its potential contamination (e.g., PA, separation, Δ\Deltam), and cover a wider range of primary star effective temperatures. The investigation presented here illustrates the utility of combining the two techniques to reveal higher-order multiples in known planet-hosting systems.Comment: Accepted to AJ. 40 pages, 12 figure

    Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity

    Get PDF
    Kepler-1656b is a 5 RER_E planet with an orbital period of 32 days initially detected by the prime Kepler mission. We obtained precision radial velocities of Kepler-1656 with Keck/HIRES in order to confirm the planet and to characterize its mass and orbital eccentricity. With a mass of 48±4ME48 \pm 4 M_E, Kepler-1656b is more massive than most planets of comparable size. Its high mass implies that a significant fraction, roughly 80%, of the planet's total mass is in high density material such as rock/iron, with the remaining mass in a low density H/He envelope. The planet also has a high eccentricity of 0.84±0.010.84 \pm 0.01, the largest measured eccentricity for any planet less than 100 MEM_E. The planet's high density and high eccentricity may be the result of one or more scattering and merger events during or after the dispersal of the protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa
    • …
    corecore