15,770 research outputs found

    Antiferromagnetism in NiO Observed by Transmission Electron Diffraction

    Full text link
    Neutron diffraction has been used to investigate antiferromagnetism since 1949. Here we show that antiferromagnetic reflections can also be seen in transmission electron diffraction patterns from NiO. The diffraction patterns taken here came from regions as small as 10.5 nm and such patterns could be used to form an image of the antiferromagnetic structure with a nanometre resolution.Comment: 10 pages, 7 figures. Typos corrected. To appear in Physical Review Letter

    Spherical agglomeration of superconducting and normal microparticles with and without applied electric field

    Full text link
    It was reported by R. Tao and coworkers that in the presence of a strong electric field superconducting microparticles assemble into balls of macroscopic dimensions. Such a finding has potentially important implications for the understanding of the fundamental physics of superconductors. However, we report here the results of experimental studies showing that (i) ball formation also occurs in the absence of an applied electric field, (ii) the phenomenon also occurs at temperatures above the superconducting transition temperature, and (iii) it can also occur for non-superconducting materials. Possible origins of the phenomenon are discussed.Comment: Small changes in response to referee's comments. To be published in Phys. Rev.

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the μ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Electromotive forces and the Meissner effect puzzle

    Get PDF
    In a voltaic cell, positive (negative) ions flow from the low (high) potential electrode to the high (low) potential electrode, driven by an `electromotive force' which points in opposite direction and overcomes the electric force. Similarly in a superconductor charge flows in direction opposite to that dictated by the Faraday electric field as the magnetic field is expelled in the Meissner effect. The puzzle is the same in both cases: what drives electric charges against electromagnetic forces? I propose that the answer is also the same in both cases: kinetic energy lowering, or `quantum pressure'

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    Coupling Between Thermal Oscillations in the Surface of a Micro-Cylinder and Vortex Shedding

    Get PDF
    his article studies the coupling between prescribed thermal oscillations in the surface of a micro-cylinder and vortex shedding. We deal with the unsteady, laminar, compressible flow regime where the aerodynamics forces have a periodic behavior. It is shown that appropriate spatial and time-dependent temperature oscillations on the surface of the micro-cylinder create a resonance that controls the amplitude and frequency of both lift and drag coefficients. In practice, what we study is a mechanism to modulate the amplitude and frequency of mechanical loads of aerodynamics origin in a micro-structure by using surface temperature fluctuations as the control parameter

    Condensation energy in Eliashberg theory -- from weak to strong coupling

    Full text link
    We consider two issues related to the condensation energy in superconductors described by the Eliashberg theory for various forms of the pairing interaction, associated either with phonon or electronic mechanisms of superconductivity. First, we derive a leading correction to the BCS formula for the condensation energy to first order in the coupling λ\lambda. Second, we show that at a given λ\lambda, the value of the condensation energy strongly depends on the functional form of the effective pairing interaction Γ(ω)\Gamma (\omega).Comment: 6 pages, 5 figures, published in PRB; missing reference has been adde

    Dynamics of Coherent States in Regular and Chaotic Regimes of the Non-integrable Dicke Model

    Full text link
    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time tt, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.Comment: Contribution to the proceedings of the Escuela Latinoamericana de F\'isica (ELAF) Marcos Moshinsky 2017. (9 pages, 4 figures
    corecore