88 research outputs found

    Characterization of the novel protein P9TLDR (temporal lobe down-regulated) with a brain-site-specific gene expression modality in Alzheimer’s disease brain

    Get PDF
    AbstractAlzheimer’s disease (AD) is an aging-related neurodegenerative disorder characterized by irreversible loss of higher cognitive functions. The disease is characterized by the presence of amyloid plaques and neurofibrillary tangles (NFT). In the current study we isolated from an intra-cerebral brain-site-specific (AD temporal lobe vs. AD occipital lobe) polymerase chain reaction (PCR)-select cDNA suppression subtractive hybridization (PCR-cDNA-SSH) expression analysis the novel gene P9TLDR, potentially a microtubule-associated protein involved in neuronal migration, with an altered expression pattern: down-regulated in the temporal lobe cortex of early stage AD brains. In an in vitro AD-related cell model, amyloid-β peptide (Aβ)-treated neurons, reduced P9TLDR expression correlated with increased tau protein phosphorylation. In conclusion, interference with the P9TLDR signalling pathways might be a therapeutic strategy for the treatment of AD

    Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer's disease

    Get PDF
    Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer’s disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration.This work was supported in part by grants-in-aid for Challenging Exploratory Research (26670091) and for Scientific Research on Innovative Areas (23117517) to K.I., and by grants-in-aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network, 221S0003) and for Platform of Supporting Cohort Study and Biospecimen Analysis (JSPS KAKENHI JP 16H06277). H.T.V. is receiving a scholarship from MEXT and formerly from Shizuoka Bank

    Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome

    Get PDF
    We previously showed that male Tsumura Suzuki obese diabetes (TSOD) mice, a spontaneous mouse model of metabolic syndrome, manifested gut dysbiosis and subsequent disruption of the type and quantity of plasma short-chain fatty acids (SCFAs), and daily coffee intake prevented nonalcoholic steatohepatitis in this mouse model. Here, we present a preliminary study on whether coffee and its major components, caffeine and chlorogenic acid, would affect the gut dysbiosis and the disrupted plasma SCFA profile of TSOD mice, which could lead to improvement in the liver pathology of these mice. Three mice per group were used. Daily intake of coffee or its components for 16 wk prevented liver lobular inflammation without improving obesity in TSOD mice. Coffee and its components did not repair the altered levels of Gram-positive and Gram-negative bacteria and an increased abundance of Firmicutes in TSOD mice but rather caused additional changes in bacteria in six genera. However, caffeine and chlorogenic acid partially improved the disrupted plasma SCFA profile in TSOD mice, although coffee had no effects. Whether these alterations in the gut microbiome and the plasma SCFA profile might affect the liver pathology of TSOD mice may deserve further investigation

    Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome

    Get PDF
    Male Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and obesity-related metabolic syndrome. Gut dysbiosis, an imbalance of gut microbiota, has been implicated in the pathogenesis of metabolic syndrome, but its mechanisms are unknown. Short-chain fatty acids (SCFAs) are the main fermentation products of gut microbiota and a link between the gut microbiota and the host’s physiology. Here, we investigated a correlation among gut dysbiosis, SCFAs, and metabolic syndrome in TSOD mice. We detected enriched levels of Gram-positive bacteria and corresponding decreases in Gram-negative bacteria in 24-wk-old metabolic syndrome-affected TSOD mice compared with age-matched controls. The abundance of Bacteroidetes species decreased, the abundance of Firmicutes species increased, and nine genera of bacteria were altered in 24-wk-old TSOD mice. The total plasma SCFA level was significantly lower in the TSOD mice than in controls. The major plasma SCFA—acetate—decreased in TSOD mice, whereas propionate and butyrate increased. TSOD mice had no minor SCFAs (valerate and hexanoate) but normal mice did. We thus concluded that gut dysbiosis and consequent disruptions in plasma SCFA profiles occurred in metabolic syndrome-affected TSOD mice. We also propose that the TSOD mouse is a useful model to study gut dysbiosis, SCFAs, and metabolic syndrome

    Iron deposition in autopsied liver on patients receiving long-term TPN

    Get PDF
    Background Vitamins and minerals are routinely administered by total parenteral nutrition (TPN). However, in Japan, adjustments in iron dosage are difficult because blended mineral preparations are often used. It is therefore unclear whether the iron content is appropriate in cases of long-term TPN. The aim of the study was to assess the influence of iron administration by long-term TPN on iron deposition in post-mortem liver samples isolated from older deceased patients. Methods Liver tissues were collected from post-mortem autopsies of 187 patients over a period of 15 years. Samples were stained with Prussian blue and histologically evaluated from Grade 0–V by at least three different observers. Specimens with positive and negative iron staining were compared, and positive samples were grouped according to the level and distribution of the staining. Post-mortem blood obtained from the subclavian vein during autopsy was also analysed. Samples were collected for the measurement of unsaturated serum iron, serum iron, albumin, prealbumin, hepcidin, and IL-6 concentrations. Results Iron accumulation in the liver was significantly higher in male patients (p = 0.005) with a history of surgery (p = 0.044) or central vein administration of iron (p<0.001). Additionally, the duration of TPN in the iron-positive group was significantly longer than in the iron-negative group (p = 0.038). Serum analysis revealed that unsaturated serum iron was significantly higher in the iron-negative group and that ferritin and serum iron were significantly higher in the iron-positive group. No other statistically significant differences were observed between the two groups. Conclusions Chronic intravenous administration of iron was associated with iron deposition in the liver, even when given the minimum recommended dosage. In long-term TPN patients, the iron dose should therefore be carefully considered

    Influence of pneumonia complications on the prognosis of patients with autopsy-confirmed Alzheimer\u27s disease, dementia with Lewy bodies, and vascular dementia

    Get PDF
    BackgroundPneumonia is a major, complicated disease in patients with dementia. However, the influence of pneumonia on the prognosis of patients with varying types of dementia has not been fully evaluated.ResultsOf the 157 eligible patients, 63 (40.1%) had AD, 42 (26.8%) had DLB, and 52 (33.1%) had VaD. Pneumonia complication was observed with high incidence in each subtype of dementia, especially in DLB (90.5%). The median total duration from dementia onset to death was 8 years in AD and DLB, and 5 years in VaD. The VaD subtype had more male patients than AD or DLB (P = 0.010), and age of death in this group was the youngest among the three groups (P = 0.018). A significant difference was observed in the survival time by the Kaplan–Meier method among the three groups (P < 0.001) and among the groups with pneumonia (P = 0.002). The factors associated with shorter survival time were male gender, pneumonia complications, diabetes mellitus, age of dementia onset ≥ 75 years, and VaD.ConclusionsPneumonia complications shortened the survival time of patients with AD, DLB, and VaD

    Nasal Extracts from Patients with Alzheimer’s Disease Induce Tau Aggregates in a Cellular Model of Tau Propagation.

    Get PDF
    Background:Emerging evidence indicates that the misfolded tau protein can propagate aggregates between cells in a prion-like manner. This prion activity has been typically studied in brain extracts of patients with Alzheimer’s disease (AD), but not in the olfactory region that can be a potential biomarker in AD.Objective:To investigate the prion seeding activity of tau in nasal mucosa tissues using a cell culture model of tau propagation.Methods:Brain and nasal mucosa homogenates were added to HEK293T cells expressing three repeat or four-repeat domains of tau with the L266V, V337M (3RD*VM) and P301L and V377M mutations (4RD*LM) fused to the enhanced green fluorescence protein (EGFP) respectively. We also measured the level of phosphorylated tau (p-tau), total tau (t-tau), and p-tau/t-tau ratio and performed correlation analysis between tau prion activity and the level of tau.Results:We found that brain and nasal tissue homogenates from patients with AD significantly induced tau aggregation in HEK293T cells either expressing tau 3RD*VM-EGFP or 4RD*LM-EGFP compared with control brain and nasal tissue homogenates. The levels of p-tau and p-tau/t-tau ratio were significantly increased in the brain of patients with AD; however, no significant difference was found in nasal tissue compared with their respective control tissue homogenates.Conclusion:These results suggest that the nasal tissues contain tau seeds, similar to the brain, albeit without changes in the levels of p-tau and t-tau. Therefore, a cellular bioassay using nasal tissues would have great potential as an AD biomarker because of the usefulness of nasal tissue biopsy

    A diagnostic marker for superficial urothelial bladder carcinoma : lack of nuclear ATBF1 (ZFHX3) by immunohistochemistry suggests malignant progression

    Get PDF
    Background: Pathological stage and grade have limited ability to predict the outcomes of superficial urothelial bladder carcinoma at initial transurethral resection (TUR). AT-motif binding factor 1 (ATBF1) is a tumor suppressive transcription factor that is normally localized to the nucleus but has been detected in the cytoplasm in several cancers. Here, we examined the diagnostic value of the intracellular localization of ATBF1 as a marker for the identification of high risk urothelial bladder carcinoma. Methods: Seven anti-ATBF1 antibodies were generated to cover the entire ATBF1 sequence. Four human influenza hemagglutinin-derived amino acid sequence-tagged expression vectors with truncated ATBF1 cDNA were constructed to map the functional domains of nuclear localization signals (NLSs) with the consensus sequence KR[X10-12]K. A total of 117 samples from initial TUR of human bladder carcinomas were analyzed. None of the patients had received chemotherapy or radiotherapy before pathological evaluation. Results: ATBF1 nuclear localization was regulated synergistically by three NLSs on ATBF1. The cytoplasmic fragments of ATBF1 lacked NLSs. Patients were divided into two groups according to positive nuclear staining of ATBF1, and significant differences in overall survival (P = 0.021) and intravesical recurrence-free survival (P = 0.013) were detected between ATBF1+ (n= 110) and ATBF1− (n=7) cases. Multivariate analysis revealed that ATBF1 staining was an independent prognostic factor for intravesical recurrence-free survival after adjusting for cellular grading and pathological staging (P = 0.008). Conclusions: Cleavage of ATBF1 leads to the cytoplasmic localization of ATBF1 fragments and downregulates nuclear ATBF1. Alterations in the subcellular localization of ATBF1 due to fragmentation of the protein are related to the malignant character of urothelial carcinoma. Pathological evaluation using anti-ATBF1 antibodies enabled the identification of highly malignant cases that had been overlooked at initial TUR. Nuclear localization of ATBF1 indicates better prognosis of urothelial carcinoma
    corecore