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Characterization of the novel protein P9TLDR (temporal lobe down-regulated)
with a brain-site-specific gene expression modality in Alzheimer’s disease brain
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Alzheimer’s disease (AD) is an aging-related neurodegenerative disorder characterized by irrevers-
ible loss of higher cognitive functions. The disease is characterized by the presence of amyloid pla-
ques and neurofibrillary tangles (NFT). In the current study we isolated from an intra-cerebral
brain-site-specific (AD temporal lobe vs. AD occipital lobe) polymerase chain reaction (PCR)-select
cDNA suppression subtractive hybridization (PCR-cDNA-SSH) expression analysis the novel gene
P9TLDR, potentially a microtubule-associated protein involved in neuronal migration, with an
altered expression pattern: down-regulated in the temporal lobe cortex of early stage AD brains.
In an in vitro AD-related cell model, amyloid-b peptide (Ab)-treated neurons, reduced P9TLDR
expression correlated with increased tau protein phosphorylation. In conclusion, interference with
the P9TLDR signalling pathways might be a therapeutic strategy for the treatment of AD.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

As a progressive neurodegenerative disorder of the central ner-
vous system (CNS), AD is characterized by impaired memory and
the deterioration of higher cognitive functions [1,2]. Though the
exact mechanism that leads to the clinical manifestations of spo-
radic or familial AD has yet to be fully understood, it is postulated
to be a multifactorial syndrome that includes causes as diverse as
lifestyle, environmental and genetic factors [3,4]. The pathological
hallmarks of AD include deposition of extracellular amyloid pla-
ques, cerebrovascular amyloidosis and intracellular NFTs. NFTs
are formed by hyper-phosphorylation of the microtubule-associ-
ated protein tau (MAPT), while proteolytic processing of the Amy-
loid beta Precursor Protein (APP) generates the neurotoxic Ab
peptide, which has been implicated in the formation of neuritic
amyloid plaques [5,6]. Neurodegeneration (ND) in AD progresses
sequentially, starting firstly in predisposed induction sites from
the medial temporal lobe, advancing in topographically predictable
sequences and ultimately expanding to the temporal association
cortex. Some neuronal types, cortical areas and subcortical nuclei
chemical Societies. Published by E
remain almost untouched, whereas others sustain severe damages.
While the occipital lobe cortex retains nearly normal function,
even in terminal stage patients, the temporal lobe cortex, by con-
trast, as one of the most fragile parts of the brain, is extremely vul-
nerable to neuronal death [7–10]. Thus, it might be possible to
identify in the temporal lobe those genes that are causative for
AD, and in the occipital lobe eventually those genes that are capa-
ble to prevent ND in this area. Accordingly, we previously com-
pared the genetic expression profile in the occipital and temporal
lobes of a patients with AD using the state-of-the-art inter- and in-
tra-cerebral brain-site-specific PCR-cDNA-SSH technology, that
had various advantages over conventional methods such as Gene-
Chip microarrays, to present a gene expression profile of a number
of known genes, such as MAP1B, NCALD, FKBP14, p33MONOX,
CLIPR-59, TRIM32/37, HSP90 or RTN3 that undergo brain-site-spe-
cific changes in AD, and discussed their potential involvement in
progressive ND in AD brains [11–15].

In the current study we specifically searched for novel genes
that were previously down-regulated (unpublished) in the tempo-
ral lobe (=up-regulated in the occipital lobe) of AD patients in our
inter-cerebral brain-site-specific (AD temporal lobe vs. control
temporal lobe and AD temporal lobe vs AD occipital lobe) analysis
[12] to isolate the novel thus far unknown gene P9TLDR that
lsevier B.V. All rights reserved.
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Fig. 1. Characteristic features of the novel protein P9TLDR.
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showed now also a down-regulation in the temporal lobe cortex in
our intra-cerebral brain-site-specific PCR-cDNA-SSH differential
screening (AD temporal lobe vs. AD occipital lobe) analysis and
we disclose its potential neurobiological features using molecular
and cell biological studies as well as bio-computational analyses.

2. Materials and methods

2.1. Reagents

Unless indicated, all reagents used for biochemical methods
were purchased from Sigma–Aldrich (St. Louis, MO, USA). Recom-
binant human brain-derived neurotrophic factor (BDNF) was ob-
tained from PeproTech (Rocky Hill, NJ, USA). Ab (1–40) was
purchased from Peptide Institute Inc. (Osaka, Japan) and a stock-
solution prepared at a concentration of 1 mg/ml in phosphate-buf-
fered saline (PBS) pH 7.4 with a 24 h pre-incubation period at 37 �C
before cell culture experiments were performed [16,17].

2.2. Antibodies

Anti-MAPT (microtubule-associated protein tau, 1:1000, mouse
monoclonal (TAU-5); Cat-No: 577801, recognizes the �45–68 kDa
tau protein; Calbiochem, Millipore, Tokyo, Japan) and anti-phos-
phorylated MAPT (p-MAPT, 1:1000, mouse monoclonal (AT-8),
Ser202/Thr205; Thermo Scientific Pierce, Rockford, IL, USA).

2.3. Human subject

A patient with sporadic AD (early stage, low incidence; with
neuropathological changes in the limbic system [5–7,18–22]
Table 1) received a pathological diagnosis of AD according to the
criteria of the Consortium to Establish a Registry for AD (CERAD)
and the Braak stage [7,23,24]. The patient was also cognitively
evaluated by neuropsychological tests using the mini-mental state
examination (MMSE) and Hasegawa’s dementia scale (HDS, or the
HDS revised version (HDS-R)) which is commonly utilized in Japan
as we have previously reported [12,24–26]. The brain was obtained
from the brain bank of the Choju Medical Institute of Fukushimura
hospital (Toyohashi, Aichi, Japan), and the protocols utilized were
independently approved by the local ethics committees of the
Brain Function Research Institute (Osaka, Japan) and the
Fukushimura hospital [12]. The scientific use of human material
was conducted in accordance with the Declaration of Helsinki,
and informed consent was obtained from the guardians of the
patient. The brain was weighed at the time of autopsy, snap frozen
with liquid nitrogen, and stored at�80 �C. The case we selected had
not been on life support with artificial ventilators. In particular, we
carefully selected a relatively young (75-year-old) test subject who
Table 1
Characteristic features of the human brain tissue samples.

Patient
No
([12])

Pathological
diagnosis

Gender Age
(years)

Stage of
amyloid
deposits (–, A,
B, C)

NFTs
stage
(I–VI)

PMI
(h)

Cerebral
cortex
area

V SDAT Female 75 C III–IV 3 Temporal/
Occipital

SDAT: Senile dementia with Alzheimer’s type.
NFTs: neurofibrillary tangles.
PMI: post-mortem-interval in hours.
– = none, A = rare or a few, B = mild or moderate, C = numerous or marked.
Temporal lobe, Brodmann’s area No. 21 (the ‘T2’ area).
Occipital lobe, Brodmann’s area No. 19 (near the lateral occipital gyrus).

Fig. 2. Establishing an AD-related in vitro cell death system confirmed by various
means. (A) Morphological cell analysis by microscopy revealed neurite degenera-
tion induced by Ab (1–40) in human differentiated neuronal SH-SY5Y cells. Pictures
were taken 4 days after Ab (1–40) (20 lM) treatment. Control: vehicle control, Ab:
Ab (1–40) (20 lM) stimulation. Scale bar: 50 lm. (B) Western blot analysis of tau
(MAPT) protein phosphorylation induced by Ab (1–40) in human differentiated
neuronal SH-SY5Y cells. Western blots were performed using anti-phosphorylated
microtubule-associated protein tau (p-MAPT) and anti-MAPT (as internal control
for equal protein loading) antibodies, respectively. C: vehicle control, Ab: Ab (1–40)
(20 lM) stimulation. Upper panel shows a schematic representation of the time-
dependent increased MAPT phosphorylation mediated by Ab. (C) Time-course of Ab
(1–40) (20 lM)-induced cytotoxicity in human differentiated neuronal SH-SY5Y
cells. MTT assay. C: vehicle control, Ab: Ab (1–40) (20 lM) stimulation. Cells were
incubated for the indicated periods of days. ⁄P < 0.05.
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was in the early/intermediate stage of AD in order to avoid effects
other than the onset of AD, such as aging.

2.4. Human tissue RNA isolation, generation of a PCR-cDNA-SSH
library, reverse transcription reaction, cDNA cloning, RT-PCR, P9TLDR
mRNA and protein sequence analyses, cell culture, cell lysis and
protein extraction, SDS–PAGE and western blot analysis

These procedures were described previously in detail (Supple-
mentary materials and methods) [12,15–17,24,27–30].

2.5. MTT assay

Cell viability was assessed using the colorimetric MTT (3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay
(Sigma, according to the manufacturer’s protocol) which offers a
Fig. 3. Quantitative RT-PCR analysis of P9TLDR mRNA expression in Ab (1–40) (20 lM
Agarose gel analysis of the PCR products obtained by RT-PCR as described in materials an
without mRNA template; MW: molecular weight marker (base-pairs (bp)). Upper panel
P9TLDR expression normalized to ACTB. A representative gel is shown. (B) Quantita
densitometric scores for P9TLDR and ACTB PCR products ± S.D. of three independent an

Fig. 4. STRING-9.0 analysis (at http://string-db.org/; default mode) of P9TLDR’s potentia
APP and MAPT networks remains to be elucidated. APP, amyloid beta (A4) precursor
member 2; APBB1, APP-binding, family B, member 1 (Fe65); APBB2, APP-binding, fami
CDK5, cyclin-dependent kinase 5; GFRA1, GDNF family receptor alpha 1; MAPT, microtub
molecule 1; p9TLDR; PSEN1, presenilin 1; PSEN2, presenilin 2; RTN3, reticulon 3; ST8SI
quantitative method for evaluating neurons’ response to Ab (1–
40) (2–20 lM), whether it be e.g. a decrease in growth due to apop-
tosis. Briefly, upon Ab (1–40) (2–20 lM) stimulation, MTT was
added at a final concentration of 0.3 mg/ml and incubated for 4 h
at 37 �C/5% CO2. Thereafter, the reaction was terminated with the
same volume of detergent (10% SDS containing 1 mM NH4OH) as
that of culture medium. After further incubation for 24 h at
37 �C, the absorbance was quantified by spectrophotometric
means at 550 nm. Experiments were performed twice, with each
set repeated in triplicates [16].

2.6. Statistical analysis

The results are presented as mean ± S.D. The data were sub-
jected to a Student’s t-test (two-tailed; P < 0.05 was considered
significant).
)-treated human differentiated neuronal SH-SY5Y cells as described in Fig. 2. (A)
d methods. Time duration of Ab treatment shown in hours; NT: no template, control
shows a schematic representation of the time-dependent decrease in Ab-mediated

tion of the P9TLDR transcripts shown in (A). Values represent the ratios of the
alyses (⁄P < 0.05 compared with controls at 0 h).

l interactive signalling pathways. The functional significance of P9TLDR within the
protein; APBA1, APP-binding, family A, member 1; APBA2, APP-binding, family A,
ly B, member 2; APOE, apolipoprotein E; BACE1, beta-site APP-cleaving enzyme 1;
ule-associated protein tau; NAV1, neuron navigator 1; NCAM1, neural cell adhesion

A4, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4.

http://string-db.org/
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3. Results

3.1. Bio-computational characterization of the novel P9TLDR mRNA
and protein sequences

We identified the novel gene P9TLDR (Fig. 1) that showed a sig-
nificant down-regulation in our previous inter-cerebral brain-site-
specific expression study in the lateral temporal lobe cortices of AD
patients (not disclosed; [12]) which was herewith confirmed by
our intra-brain-site-specific mRNA expression analysis (RRS-level
(relative to the reverse-subtracted probes as described previously)
[12]: 1.9 (temporal lobe vs occipital lobe)) .

Bio-computational sequence analyses revealed that P9TLDR
seems to be a member of a novel protein family that comprises
so far only two other uncharacterized proteins of 75 and 73 amino
acids (aa), respectively.

Besides, we unraveled that P9TLDR (aa44 – aa75) has to some
parts of the human neuron navigator 1 protein (NAV1 (1877aa),
microtubule-associated protein involved in neuronal
migration [31]), a 50% identity (over a sequence length of 31
aa). As such, it is interesting to note that the same sequence
of 31 aa is also found to be homologous to NEK5 (NIMA (never
in mitosis gene a)-related kinase 5)0, thus indicating that P9TLDR
might be epigenetically controlled and eventually found in post-
mitotic differentiated neurons only. Taking these findings into
account it is worth to mention that NCAM1 (neural cell adhe-
sion molecule 1) is also located on Chr 11q23.1 close to
P9TLDR.

3.2. Expression of P9TLDR in Ab-treated neurons

In order to understand the potential relationship between
P9TLDR expression and AD, we applied an in vitro AD-related cell
culture model where neuronal cell death was induced by the treat-
ment with Ab. At first, the AD-related Ab-mediated cell death sys-
tem was established in human differentiated neuronal SH-SY5Y
cells (American Type Culture Collection (ATCC), Manassas, VA,
USA) and confirmed by (i) morphological changes (Fig. 2A), (ii)
the time-dependent phosphorylation of the tau protein MAPT
(Fig. 2B) and (iii) Ab-mediated neuronal cell death by MTT analysis
(and confirmed by a lactate dehydrogenase (LDH) cytotoxicity as-
say (data not shown)) (Fig. 2C). This in vitro AD cell culture model
was previously introduced by others and was also used by us to
show a correlation between JNK (c-jun N-terminal kinase) and
MAPT phosphorylation [16,32].

Accordingly, semi-quantitative RT-PCR analysis was performed
at the indicated time points upon Ab treatment (Fig. 3). Although
Ab-treated neurons showed significant neuronal cell death only
by day 4 (Fig. 2A) [16,32], MAPT protein phosphorylation in Ab-
treated neurons occurred already 3 h after Ab treatment, and JNK
phosphorylation after 6 h (data not shown) [16,32]; the expression
of P9TLDR progressively decreased at an earlier stage as well – at
3 h upon Ab stimulation (Fig. 3).
4. Discussion

Due to its homologue region to NAV1 and NEK5 and its chromo-
somal location near NCAM1 it is tempting to speculate that P9TLDR
may have a microtubule-associated functional role related to neu-
ronal migration. The fact that P9TLDR showed reduced expression
in the temporal lobes of comparatively early-stage AD patients and
progressively reduced neuronal expression upon Ab stimulation,
suggests that its signalling pathways might be involved in neuro-
pathophysiological processes that may play a pivotal role at early
stages of AD with mild cognitive symptoms (Fig. 4).
Taking into consideration that the decreased expression of
P9TLDR correlated in the in vitro AD model with early MAPT and
JNK phosphorylation [16,32] – much earlier than the appearance
of significant neuronal cell death – it seems that the function of
P9TLDR might be disturbed prior to neuronal cell death.

Recently, it has been hypothesized that a prion-like transmis-
sion of misfolded hyper-phosphorylated MAPT or Ab aggregates
from neuron to neuron is one possible explanation for AD-associ-
ated anatomical regularity and progression which appears in the
absence of both MAPT lesions in the transentorhinal region as well
as cortical Ab pathology. Misfolded MAPT in the neuronal cyto-
plasm may function as seed that triggers hyper-phosphorylation
and misfolding of the natively unfolded MAPT protein. Disease pro-
gression is thus associated with the intercellular transfer of patho-
genic proteins such as hyper-phosphorylated MAPT aggregates
[33–35]. This sheds new light on the discussion that an impairment
of the ubiquitin proteasome system (UPS) is affected at early stages
of AD [36,37] and is in agreement with our previous data showing
that pivotal proteins of the chaperone/proteasomal pathways, such
as HSP90, FKBP14 and TRIM32/37, are changed at early stages of
AD [12]. Accordingly, P9TLDR may also have a crucial role within
an impaired chaperone/proteasomal degradation system that
may contribute to the prion-like inter-neuronal transmission of
protein aggregates eventually correlating with clinical symptoms
at early stages of AD.

Concluding, our data provide a new perspective for further re-
gional examination of brain P9TLDR expression levels in normal,
AD and brains of other neurodegenerative diseases which might
give a clue as to whether P9TLDR is involved in the disturbed high-
er brain functions. Further investigations also need to identify
what triggers the down-regulation of P9TLDR in AD and under
what circumstances this protein gets activated to interfere eventu-
ally with MAPT protein phosphorylation and the chaperone/prote-
asomal degradation system in order to develop better therapeutics
for the treatment of AD.
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