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Analysis of the gut microbiome 
and plasma short-chain fatty acid 
profiles in a spontaneous mouse 
model of metabolic syndrome
Kazuchika Nishitsuji1, Jinzhong Xiao2, Ryosuke Nagatomo3, Hitomi Umemoto4, Yuki 
Morimoto5, Hiroyasu Akatsu6, Koichi Inoue3 & Koichi Tsuneyama5

Male Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and obesity-related 
metabolic syndrome. Gut dysbiosis, an imbalance of gut microbiota, has been implicated in the 
pathogenesis of metabolic syndrome, but its mechanisms are unknown. Short-chain fatty acids (SCFAs) 
are the main fermentation products of gut microbiota and a link between the gut microbiota and the 
host’s physiology. Here, we investigated a correlation among gut dysbiosis, SCFAs, and metabolic 
syndrome in TSOD mice. We detected enriched levels of Gram-positive bacteria and corresponding 
decreases in Gram-negative bacteria in 24-wk-old metabolic syndrome-affected TSOD mice compared 
with age-matched controls. The abundance of Bacteroidetes species decreased, the abundance of 
Firmicutes species increased, and nine genera of bacteria were altered in 24-wk-old TSOD mice. The 
total plasma SCFA level was significantly lower in the TSOD mice than in controls. The major plasma 
SCFA—acetate—decreased in TSOD mice, whereas propionate and butyrate increased. TSOD mice had 
no minor SCFAs (valerate and hexanoate) but normal mice did. We thus concluded that gut dysbiosis 
and consequent disruptions in plasma SCFA profiles occurred in metabolic syndrome-affected TSOD 
mice. We also propose that the TSOD mouse is a useful model to study gut dysbiosis, SCFAs, and 
metabolic syndrome.

Metabolic syndrome comprises a combination of obesity-related metabolic alterations that increases the risk of 
type 2 diabetes mellitus and cardiovascular disease1,2. The clinical hallmarks of this syndrome include insulin 
resistance, hyperglycemia, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)3,4. The essential feature 
of metabolic syndrome is a state of low-grade inflammation5. Gut microbiota has been implicated as a pathogenic 
factor that affects a host’s metabolism6. Mammals harbor diverse and immensely active gut microbiota that con-
sists of more than 10 trillion microbial cells and more than 1000 microbial strains7. Via dynamic crosstalk with a 
host, this commensal microbiota can have a number of functions that affect the host’s physiology, from immune 
responses to energy metabolism8,9. Growing evidence supports the belief that gut microbiota is closely involved 
in the development of various diseases, including chronic gastrointestinal diseases10, neurological diseases11,12, 
and systemic diseases13,14. Alterations in gut microbiota composition may play a critical role in the development 
of metabolic syndrome, which is especially relevant to obesity-associated inflammation (i.e., diabetes mellitus, 
NAFLD, and nonalcoholic steatohepatitis [NASH])15–27. The mechanism by which gut microbiota affects a host’s 
physiology may be at least partly mediated by short-chain fatty acids (SCFAs), which contain 1–6 carbons and 
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are the most abundant product of bacterial fermentation of undigested dietary fibers8,28–30. SCFAs can activate 
G-coupled receptors, inhibit histone deacetylase (HDAC), and be used as an energy substrate, thereby affecting 
the host’s physiological processes30.

Tsumura Suzuki obese diabetes (TSOD) mice were originally established as a spontaneous model of type 
2 diabetes mellitus31,32 and were also shown to spontaneously develop NASH33, a progressive phenotype of 
NAFLD34. Given that these pathological manifestations in TSOD mice are closely related to low-grade inflam-
mation, we hypothesized that alterations in gut microbiota and plasma SCFA profiles in TSOD mice may affect a 
host’s immune system and induce inflammation, which would underlie the development of metabolic syndrome 
in TSOD mice. In this study, we analyzed the gut microbiome and plasma SCFA profiles in 24-wk-old TSOD mice 
that had already developed insulin resistance and NASH33.

Results
Analysis of the gut microbiome in TSOD mice. We first confirm that body weights, the ratios of vis-
ceral fat or liver to body weight were significantly higher in 24-wk-old TSOD mice (Supplementary Fig. S1a–c). 
We also scored the liver histology according to our previous report (Supplementary Fig. S1d)33. Because micro-
biota in fecal samples is widely accepted as a surrogate for gut microbiota, we collected feces from 24-wk-old 
TSOD male mice and Tsumura Suzuki non-obesity (TSNO) mice (controls), and we analyzed the taxonomic 
compositions of the microbiota by using 16S ribosomal RNA (rRNA) gene sequencing of DNA extracted from 
the fecal samples. As Fig. 1a shows, 24-wk-old metabolic syndrome-affected TSOD33 mice and age-matched 
control mice manifested different compositions of Gram-positive and Gram-negative bacteria. Compared with 
control mice, TSOD mice had a significantly higher content of Gram-positive bacteria but a significantly lower 
content of Gram-negative bacteria (Fig. 1b). We also observed marked changes in the composition of intestinal 
flora at the phylum level in TSOD mice (Fig. 2a). The percentage of the “obese bacteria”, i.e., Firmicutes, was 
significantly higher and that of the “lean bacteria”, i.e., Bacteroidetes, was significantly lower in TSOD mice com-
pared with controls (Fig. 2b). These findings were consistent with results from a study of obese human subjects 
and animals18,19. Also, the ratio of Firmicutes to Bacteroidetes was higher in TSOD mice (Fig. 2c). These results 
reflected the changes in the composition of the populations of Gram-positive and Gram-negative bacteria (Fig. 1), 
inasmuch as Firmicutes and Bacteroidetes were the most abundant phyla for Gram-positive and Gram-negative 
bacteria, respectively. These data suggest that the TSOD mouse is a useful model for metabolic syndrome and can 
manifest the characteristics of the obesity-specific gut microbiome18,19.

Also, among the major bacterial families, we found two families in the phylum Firmicutes—Clostridiaceae 
and Erysipelotrichaceae—that showed significant increases in 24-wk-old TSOD mice (Table 1). These bacteria 
were reportedly involved in a host’s inflammatory response35,36. At the genus level, we detected about 50 bacterial 
species in both groups of mice. Among these genera, the percentages of nine changed significantly in 24-wk-old 

Figure 1. Increased levels of Gram-positive bacteria and decreased levels of Gram-negative bacteria in 24-wk-
old (24-wo) TSOD mice. (a) Composition of fecal bacteria in 24-wk-old TSOD mice and age-matched TSNO 
mice. (b) Comparison of the percentages of Gram-positive bacteria and Gram-negative bacteria in 24-wk-old 
TSOD mice and age-matched TSNO mice. Boxes indicate the interquartile ranges between the first and third 
quartiles, and the lines within the boxes indicate the medians. If no error bars appear, the experimental error 
was smaller than the symbol itself. **P < 0.01 versus TSNO mice.
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Figure 2. Analysis of fecal bacteria at the phylum level. (a) Composition of fecal bacteria at the phylum level 
in 24-wk-old TSOD mice and age-matched TSNO mice. (b,c) Comparison of the percentages (b) and ratio (c) 
of the obese microbiota Firmicutes and the lean microbiota Bacteroidetes in 24-wk-old TSOD mice and age-
matched TSNO mice. (b) Boxes indicate the interquartile ranges between the first and third quartiles, and the 
lines within the boxes indicate the medians. If no error bars appear, the experimental error was smaller than the 
symbol itself. (c) Data are means ± SEM (n = 6). **P < 0.01 versus TSNO mice.

Phylum Class Order Family TSNO TSOD

Firmicutes Clostridia Clostridiales Ruminococcaceae
9.858 7.370

6.925–12.210 6.784–9.423

Firmicutes Clostridia Clostridiales Lachnospiraceae
9.577 5.173

7.100–10.980 4.179–7.909

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae
2.614 9.891

1.523–5.542 5.262–20.110*

Firmicutes Clostridia Clostridiales Peptococcaceae
0.748 0.500

0.474–1.386 0.440–0.659

Firmicutes Clostridia Clostridiales Clostridiaceae
0.645 3.476

0.485–0.947 3.192–4.629**

Firmicutes Clostridia Clostridiales Mogibacteriaceae
0.551 0.512

0.363–0.718 0.454–0.638

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae
0.299 0.398

0.227–0.592 0.198–0.564

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae
0.065 0.356

0.020–0.548 0.228–0.419

Table 1. Relative percentages of bacterial groups at the family level that contained more than one genus. Values 
are medians and interquartile ranges. *P < 0.05, **P < 0.01 versus 24-wk-old TSNO mice.
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TSOD mice (Table 2). As an important finding, these bacteria included Bilophila, Turicibacter, and Lactobacillus, 
which have been implicated in obesity or NAFLD37–40.

Analysis of the quantity and type of SCFAs in plasma. Whereas the homeostatic balance of gut micro-
biota benefits a host, an imbalance between beneficial and pathogenic bacteria in the presence of dysbiosis would 
be detrimental to the host. SCFAs are the main fermentation product of gut microbiota and perform diverse 
functional roles that affect the host’s physiology30. We therefore investigated whether the plasma SCFA profiles 
changed in TSOD mice. As Fig. 3 shows, we detected acetate, propionate, and butyrate as the major SCFAs, and 
valerate and hexanoate as the relatively minor SCFAs, in the plasma of TSOD and TSNO mice. The total concen-
tration of plasma SCFAs was significantly lower in 24-wk-old TSOD mice than in the age-matched control mice 
(Fig. 3a). Acetate, which was the most abundant SCFA, decreased to approximately 30% of the control value in 
24-wk-old TSOD mice (Fig. 3b). However, the plasma concentrations of the other major SCFAs—propionate 
and hexanoate—were 2–3 times higher in 24-wk-old TSOD mice than in controls (Fig. 3b). In agreement with 
a previous study reporting that leaner people showed a higher ratio of acetate to butyrate plus propionate41, the 
ratio of acetate to butyrate plus propionate in TSOD mice was significantly lower compared with that in controls 
(Fig. 3b). However, the minor SCFAs valerate and hexanoate, whose plasma concentrations were in the range of 
1.5–6.0 nM in TSNO mice, were almost absent in 24-wk-old TSOD mice (Fig. 3c). Furthermore, the plasma con-
centration of lactate, which is not only the precursor of SCFAs but also a signaling molecule that reportedly affects 
a host’s physiology by modulating HDAC and G protein-coupled receptor 81 signaling30, significantly increased 
in 24-wk-old TSOD mice (Fig. 3d). These results indicate that the dysbiosis in TSOD mice led to a loss of type 
and quantity of SCFAs, which may have a role in the development of metabolic syndrome in this mouse model.

Discussion
To investigate the hypothesis that alterations in the gut microbial community may contribute to the sponta-
neous development of metabolic syndrome in TSOD mice, we analyzed the gut microbiota and plasma SCFA 
profiles in 24-wk-old TSOD mice. As expected, we found the following modifications in the microbial commu-
nity compared with TSNO mice: (1) an increased ratio of Gram-positive bacteria to Gram-negative bacteria, (2) 
an increased abundance of the obese microbiota Firmicutes and a decreased abundance of the lean microbiota 
Bacteroidetes, (3) an altered abundance of several bacteria, including Bilophila, Turicibacter, and Lactobacillus, 
among others (Table 2).

Dysbiosis can generally be categorized into three types: (1) loss of beneficial microbes, (2) excessive growth of 
harmful microorganisms, and (3) loss of overall microbial diversity42. These categories are not mutually exclusive; 
in most cases, they can occur simultaneously. On the basis of our results described above, we concluded that dys-
biosis occurred in 24-wk-old TSOD mice. Gut dysbiosis is defined as qualitative and quantitative changes in gut 
microbiota, metabolic activity, and local distribution43. In addition to having a role in the host’s digestive system, 
gut dysbiosis has been implicated in the development of obesity and metabolic syndrome by activating a host’s 
immune response and inflammation, disturbing the intestinal barrier integrity, and causing metabolic abnormal-
ities44. The exact role of the gut dysbiosis that we observed here in the etiology or pathology of spontaneous met-
abolic syndrome in TSOD mice is yet to be elucidated. Colonization experiments such as transfer of microbiota 
from TSNO mice into TSOD mice or vice versa are required. We previously reported that TSOD mice developed 
a hepatic tumor that histopathologically resembled human hepatocellular carcinoma (HCC)45. In the present 

Phylum Class Order Family Genus TSNO TSOD

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
6.350 3.524

4.374–8.140 3.334–4.001*

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
5.629 12.130

1.817–10.070 11.030–13.240**

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
0.965 0.434

0.629–1.316 0.403–0.632*

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Allobaculum
0.521 9.607

0.078–1.734 4.505–19.320**

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus
0.437 0.130

0.315–0.650 0.068–0.276*

Firmicutes Clostridia Clostridiales Clostridiaceae Candidatus Arthromitus
0.254 0.059

0.184–0.363 0.011–0.223**

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
0.004 0.066

0–0.024 0.013–0.177*

Firmicutes Bacilli Turicibacterales Turicibacteraceae Turicibacter
0.000 5.346

0.000–0.008 4.348–6.740**

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila
0.000 0.169

0.000–0.000 0.150–0.254*

Table 2. List of bacteria whose percentages changed significantly in 24-wk-old TSOD mice. Values are medians 
and interquartile ranges. *P < 0.05, **P < 0.01 versus 24-wk-old TSNO mice.
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study, the percentage of Gram-positive bacteria was significantly higher in 24-wk-old TSOD mice compared 
with that in controls. As an interesting result, an obesity-associated increase in Gram-positive bacteria in the gut 
reportedly produced secondary bile acids that promoted HCC development46. Bile acids also reportedly activated 
a signaling network in hepatocytes that triggered hepatic inflammation47,48. Given that increased bile acids in the 
gut are known to favor Gram-positive bacteria49, the increase in Gram-positive bacteria in TSOD mice may at 
least partly contribute to hepatic carcinogenesis. Thus, TSOD mice may be useful for analyzing the effects of novel 
therapeutic agents, especially those that modulate gut microbiota, for the prevention and treatment of metabolic 
syndrome-associated HCC.

The gut microbiota was reportedly significantly affected by obesity in humans and in animal models. Ley 
et al. reported that the abundance of Bacteroidetes decreased together with a proportional increase in the phy-
lum Firmicutes in obese mice, compared with their control counterparts, independently of diet20. In agreement 
with this finding, a reduced abundance of intestinal Bacteroidetes associated with an increased abundance 
of Firmicutes was also observed in obese humans18. Also, patients with NASH had a lower percentage of 
Bacteroidetes compared with both patients with simple steatosis and healthy controls22. Although other studies 
did not always reproduce these results50,51, in the present study, the abundance of Firmicutes increased together 

Figure 3. Analysis of plasma SCFAs in TSOD mice and age-matched control mice. (a) Total concentration of 
plasma SCFAs. (b) Concentrations of the major SCFAs acetate, propionate, and butyrate, and the ratio of acetate 
to propionate plus butyrate. (c) Concentrations of the minor SCFAs valerate and hexanoate and the precursor of 
SCFAs (lactate). Data are means ± SEM (n = 6). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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with a corresponding decrease in Bacteroidetes in the spontaneous mouse model of metabolic syndrome. These 
alterations in Firmicutes and Bacteroidetes abundance are thought to contribute to the development of obesity by 
switching the host’s metabolism to increase the adsorption of fatty acids and calories and thereby lead to weight 
gain19,52. Bacteroidetes reportedly increased the production of SCFAs53. Thus, the disruption in gut microbiota 
compositions of Firmicutes and Bacteroidetes in the current study may contribute to the development of obesity 
in TSOD mice. As an interesting finding, several studies reported an increase in the Firmicutes to Bacteroidetes 
ratio in patients with irritable bowel syndrome, which shares the characteristic of chronic inflammation with 
metabolic syndrome54–56.

At the microbial family level, we found that the percentages of Erysipelotrichaceae and Clostridiaceae were sig-
nificantly higher in 24-wk-old TSOD mice than those in controls (Table 1). In other studies, the former increased 
in patients with type 2 diabetes57 and arthritis58, both of which are associated with severe inflammation. The 
latter increased in patients with autism, with unknown mechanisms and functions59,60. Bacteria in these families 
have been implicated in inflammation35,36, which suggests that these bacteria may contribute to the pathology in 
TSOD mice via exacerbation of inflammation. In addition, the percentages of several microbial genera changed in 
24-wk-old TSOD mice (Table 2). In agreement with previous studies of patients with NAFLD39,40, the percentage 
of Lactobacillus increased in TSOD mice. Inasmuch as this bacterial group can often be used as a probiotic, eluci-
dating the role of Lactobacillus in the etiology and pathology of NAFLD or NASH is a future challenge. We found 
that the percentage of Turicibacter, which was implicated in the production of butyrate61, was markedly higher 
in 24-wk-old TSOD mice, in agreement with the increase in plasma butyrate in 24-wk-old TSOD mice. Dimova 
et al. showed that Turicibacter increased in mice fed a high-fat diet38. However, two studies reported a decrease 
in Turicibacter in mice in response to high-fat feeding62,63. Although the role of Turicibacter in the development 
of metabolic syndrome is unknown, it is notable that one study reported an increased abundance of Turicibacter 
in the gut of patients with rheumatoid arthritis, an immune-mediated disease64. Another important finding is 
the presence of the pathobiont Bilophila in 24-wk-old TSOD mice, whereas Bilophila was absent in control mice. 
Bilophila is a sulfite-reducing pathobiont and causes an interleukin-10-mediated immune response, which leads 
to colitis in mice65. The growth of Bilophila can reportedly be promoted by increased taurine-conjugated bile 
acids66, which is consistent with the possibility that bile acid-favoring Firmicutes increased in TSOD mice.

Plasma SCFA profiles in TSOD mice also differed from those in control mice. Compositions of SCFAs depend 
on the microbial community compositions and the type and quantity of fermentation substrates (i.e., dietary fib-
ers)37,67,68. In the present study, because we fed both TSNO and TSOD mice standard chow, the major determinant 
of plasma SCFAs would supposedly be the composition of gut microbiota. However, because the plasma SCFA 
profile is an emergent property of the microbial community, making predictions from taxon-based analysis and 
identifying certain microbes as responsible factors are difficult69. Besides acting as an energy substrate, SCFAs can 
function as signaling molecules by modulating neuroendocrine and anti-inflammatory responses in various tis-
sues and organs69. Thus, the type and quantity of SCFAs produced by the gut microbiota are also important for the 
development of obesity and metabolic syndrome. In the present study, the total SCFA concentrations decreased 
significantly in 24-wk-old TSOD mice compared with concentrations in controls. With regard to specific SCFAs, 
the plasma concentration of acetate was significantly lower and concentrations of propionate and butyrate were 
significantly higher in 24-wk-old TSOD mice than in control mice. Inasmuch as the gut microbiome in TSOD 
mice favored Firmicutes species, which mainly produce butyrate, and did not favor Bacteroidetes species, which 
primarily produce acetate and propionate70, alterations in the SCFA profiles in TSOD mice seemed to roughly 
reflect the altered Firmicutes/Bacteroidetes ratio of the microbial community. The mechanism of the increase in 
propionate in TSOD mice remains to be elucidated, though it may depend on the mouse strains.

Acetate reportedly mediated a Bifidobacterium-induced improvement in the intestinal barrier against bac-
terial endotoxin, possibly by strengthening tight junctions of epithelial cells71,72. Although whether the reduced 
abundance of Bifidobacterium in the current study is solely accountable for the decrease in plasma acetate is 
unknown, that the decrease in plasma acetate may contribute to development of the inflammation-related pathol-
ogy of metabolic syndrome in 24-wk-old TSOD mice is highly likely. Butyrate has anti-inflammatory activity via 
modulating HDAC73. Propionate also has an anti-inflammatory property74. However, Schwiertz et al. reported 
that the propionate level increased in fecal samples of overweight and obese subjects75. In the present study, both 
plasma butyrate and propionate levels increased in 24-wk-old TSOD mice, which strongly suggests that butyrate 
and propionate may have pathogenic roles via mechanisms yet to be elucidated. We also observed that the level of 
lactate, the precursor of SCFAs30, increased in 24-wk-old TSOD mice, a finding that was consistent with results 
from previous reports showing that the plasma lactate concentration was higher in subjects with type 2 diabetes 
and obesity than in normal subjects76,77. Given that lactate acts as a mediator of inflammation78, increased lactate 
in TSOD mice may be a pathogenic factor for induction or maintenance of low-grade inflammation. Acetate, 
which was decreased in TSOD mice, is mainly produced by the Bacteroidetes phylum70 of which abundance was 
also decreased in TSOD mice. As lactate can be further metabolized to acetate79, the increase in plasma lactate in 
TSOD mice might be at least partly due to a decrease in the acetate production by Bacteroidetes. With regard to 
the minor SCFAs, i.e., valerate and hexanoate, we cannot currently compare our results with others, because of 
the lack of relevant literature.

In the present study, we observed altered SCFA profiles, with a decrease in total SCFA amounts and diver-
sity, in 24-wk-old TSOD mice. An altered SCFA profile or a disease-specific SCFS profile has been implicated 
in the pathology of several inflammatory diseases, including Hirschsprung’s-associated enterocolitis80, familial 
Mediterranean fever81, and celiac diseases82,83. In addition to the respective roles of each SCFA, the total SCFA 
profile itself, including composition and diversity, may affect a host’s physiology81,84. SCFAs reportedly enhanced 
secretion of glucagon-like peptide (GLP-1) that enhances glucose tolerance85. Via the SCFA receptors, SCFAs 
reportedly modulated the release of proinflammatory cytokines such as tumor necrosis factor α and interleukin 
6 that may alter insulin sensitivity and contribute to the development of persistent chronic inflammation86,87, 
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which has been implicated in cancer development including that of HCC88. It is also reported that gut microbiota 
suppress fat accumulation via the SCFA receptor89. These lines of evidence suggest that the altered SCFA profile 
observed in TSOD mice potentially contribute to the development of metabolic syndrome and HCC via multiple 
pathways. Although the physiological and pathological roles of the minor SCFAs are not fully understood, our 
results suggest that the disrupted plasma SCFA profiles may play a role in the development of obesity and meta-
bolic syndrome in TSOD mice. Additional studies are warranted.

In summary, we observed gut dysbiosis and disruptions in plasma SCFA profiles in TSOD mice. Identification 
of the mechanisms as well as specific bacteria and bacterial metabolites that are responsible for the pathology and 
etiology of metabolic syndrome in this mouse model will allow for development of precise treatments to prevent 
or manage chronic inflammatory diseases. We also propose that the TSOD mouse, which demonstrated its own 
“microbial signature,” is a useful model to study gut dysbiosis, SCFAs, and metabolic syndrome.

Methods
Animals. Six male TSOD mice and six male TSNO mice were purchased from the Institute for Animal 
Reproduction (Ibaraki, Japan). Two or three mice were reared in plastic cages in a non-barrier-sustained animal 
room at 23 ± 2 °C in 50 ± 10% relative humidity under a 12/12-h light/dark cycle. All mice were maintained with 
the basal diet MF (Oriental Yeast Co., Ltd., Tokyo, Japan) and chlorinated water ad libitum. Fecal samples were 
collected from the colon. The study was performed in accordance with the animal experiment guidelines specified 
by the University of Tokushima. All experimental protocols were approved by the animal research committee of 
Tokushima University.

Analysis of the gut microbiome. DNA was extracted from fecal samples by using the isopropanol precipi-
tation technique. Briefly, 30–40 mg of mouse feces was suspended in 19× volume of phosphate-buffered saline and 
was homogenized by using the FastPrep-24 homogenizer (MP Biomedicals, Santa Ana, CA). A sample consisting 
of 250 µL of TE buffer (200 mM Tris-HCl, 80 mM ethylenediaminetetraacetic acid, pH 9.0), 50 µL of 10% sodium 
dodecyl sulfate, 500 µL of TE-saturated phenol (Nippon Gene Co., Ltd., Tokyo, Japan), and 0.3 g of glass beads 
(diameter 0.1 mm; As-One Co., Ltd., Osaka, Japan, #BZ-01) was added to 200 µL of the ground fecal sample. The 
fecal samples were further homogenized with a FastPrep-24 homogenizer for 30 s, after which they were centri-
fuged at 15,000 rpm for 5 min at 4 °C. A sample of 400 µL of a phenol/chloroform/isoamyl alcohol (25:24:1) mix-
ture (Nippon Gene Co., Ltd.) was added to the supernatant, vortexed for 10 s, and centrifuged at 15,000 rpm for 
5 min at 4 °C. Isopropanol (250 µL) (Wako Pure Chemical Industries Ltd., Osaka, Japan) was added to 250 µL of the 
supernatant, mixed by flipping, and kept at room temperature for 10 min followed by centrifugation at 15,000 rpm 
for 10 min at room temperature. The supernatant was removed, and the resultant pellet was washed with 400 µL of 
ice-cold ethanol. The extracted DNA was air-dried and then dissolved in 2000 µL of TE buffer (pH 8.0). The V3-V4 
region of the bacterial 16S rRNA gene was amplified by using PCR with the TaKaRa Ex Taq HS Kit (TaKaRa Bio, 
Shiga, Japan) and the primer sets of Tru357F (5ʹ-CGCTCTTCCGATCTCTGTACGGRAGGCAGCAG-3ʹ) and 
Tru806R (5ʹ-CGCTCTTCCGATCTGACGGACTACHVGGGTWTCTAAT-3ʹ). The DNA was concentrated by 
amplifying, in triplicate, via PCR: preheating at 94 °C for 3 min, followed by 30 cycles of denaturation at 94 °C for 
30 s, annealing at 50 °C for 30 s, extension at 72 °C for 30 s, and a final terminal extension at 72 °C for 5 min. The 
amplicon was prepared for a sequencing instrument with the method described in a previous report90.

Analysis of SCFAs in plasma. Overall, nine analytes were targeted for SCFA analysis. Acetic acid, lactic 
acid, propionic acid (PA), butyric acid, isobutyric acid, valeric acid (VA), isovaleric acid (iso-VA), pivalic acid 
(tert-butyl-VA), and caproic acid (CA) were purchased from Wako Pure Chemical Co. For internal standards (IS), 
PA-d6, BA-d5, VA-d9, and CA-d11 were obtained from Sigma-Aldrich Co. (St. Louis, MO) and CDN Isotopes Co. 
(Quebec, Canada). Triphenylphosphine (TPP), 2,2-dipyridyl disulfide (DPDS), and 2-picolylamine were obtained 
from Tokyo Kasei Co. (Tokyo, Japan). These stock solutions were adjusted by using methanol.

The ultra-performance liquid chromatography (UPLC) system was a Waters Acquity H Class (Waters 
Co., Milford, MA). A reverse phase analysis was performed via an Acquity UPLC BEH C18 column (1.7 μm, 
2.1 × 100 mm) at 40 °C. The injection volume was 5 μL. The mobile phase consisting of solvent A (0.1% formic 
acid in water) and solvent B (0.1% formic acid in methanol) was delivered at a flow rate of 0.3 mL/min. The gra-
dient elution was as follows: B% = 2, 2, 35, 45, and 98 (0, 3, 10, 12, and 14 min). A Waters Xevo TQD triple quad-
rupole mass spectrometer was operated with an electrospray ionization (ESI) source in the positive mode. The 
ionization source conditions were as follows: capillary voltage, 2.00 kV; cone voltage, 20–70 V; collision energy, 
10–40 eV; source temperature, 150 °C; and desolvation temperature, 400 °C. The cone and desolvation gas flows 
were 50 and 800 L/h, respectively, and were obtained by using a nitrogen source (N2 Supplier Model 24S; Anest 
Iwata, Yokohama, Japan). On the basis of a previous report for useful derivatization of carboxylic acids91, mixed 
SCFAs and IS solutions were diluted by adding methanol. These solutions were reacted with 2-picolylamine 
in DPDS and TPP in acetonitrile at 60 °C for 10 min. The reaction mixtures were removed and re-dissolved in 
100 μL of methanol/water (80:20, v/v). Finally, the derivatization solutions (5 μL) were analyzed by means of 
UPLC-ESI-MS/MS. Plasma samples after thawing were added to IS and mixed with equal volumes of methanol 
and QuEChERS (Supel QuE PSA (EN) 25 mg), vortexed vigorously, and centrifuged at 15,000 rpm for 5 min. The 
supernatant was then removed, and the remaining residue was re-dissolved in methanol and derivatized by using 
the process described above for 2-picolylamine. The sample was then analyzed by means of UPLC-ESI/MS/MS.

Statistical analysis. Values were analyzed via the Mann-Whitney U-test (Figs 1b and 2b, Tables 1 and 2) or 
unpaired Student’s t-test (Figs 2c and 3), by using Prism software (GraphPad Software, La Jolla, CA). Differences 
were regarded as significant when P < 0.05.
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