82 research outputs found

    Magnetic Instability of Pr3Ru4Sn13

    Full text link
    We report on the quantum criticality of Pr3_3Ru4_4Sn13_{13} revealed by our new material research. Pr3_3Ru4_4Sn13_{13} has been synthesized by flux growth and characterized by single X-ray, powder X-ray, and powder neutron diffraction measurements. The compound adopts a Yb3_3Rh4_4Sn13_{13}-type structure with a cubic Pm3ˉ\bar{3}n. From the magnetization at 1 T, the effective magnetic moment was estimated to be 3.58 μB\mu _B per Pr3+^{3+}, suggesting that the magnetism is mainly contributed by Pr3+^{3+} ions. The specific heat and magnetization show an anomaly at TN=7.5T_{N} = 7.5 ~ K owing to the phase transition. The muon spin rotation and relaxation (μ\muSR) time spectra exhibit clear oscillations below TNT_N. This suggests that the phase is magnetically ordered. The volume fraction of the magnetic phase estimated from the initial asymmetry is around ten percent. In addition, spin fluctuations were observed at low temperatures. These results provide microscopic evidence that the material is closest to the antiferromagnetically quantum critical point with a partial order among Pr3_3T4T_4Sn13_{13} (T=T= Co, Ru, Rh).Comment: 14 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Coupled spin-charge-phonon fluctuation in the all-in/all-out antiferromagnet Cd2Os2O7

    Get PDF
    We report on a spin-charge fluctuation in the all-in/all-out pyrochlore magnet Cd2Os2O7, where the spin fluctuation is driven by the conduction of thermally excited electrons/holes and associated fluctuation of Os valence. The fluctuation exhibits an activation energy significantly greater than the spin-charge excitation gap and a peculiar frequency range of 10(6)-10(10) s(-1). These features are attributed to the hopping motion of carriers as small polarons in the insulating phase, where the polaron state is presumably induced by the magnetoelastic coupling via the strong spin-orbit interaction. Such a coupled spin-charge-phonon fluctuation manifests as a part of the metal-insulator transition that is extended over a wide temperature range due to the modest electron correlation comparable with other interactions characteristic for 5d-subshell systems

    PROPOSAL OF SINGLE-FLUX-QUANTUM LOGIC DEVICE

    Get PDF
    A new type of logic gate that can be designed using a nonhysteretic Josephson weak link is proposed. The basic component of the proposed device is a one-junction interferometer, and a logic state is represented by either a zero or a single-flux-quantum. In contrast to the “Parametric Quantron,” this device is designed to operate without a three-phase clock and the dependence of the junction critical current on magnetic field is not used. The switching behavior of the device was simulated by computer and an analytical expression for the switching delay has been obtained

    Dimensional reduction by geometrical frustration in a cubic antiferromagnet composed of tetrahedral clusters

    Get PDF
    Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field

    Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice

    Get PDF
    Zfp318, a mouse gene with a Cys2/His2 zinc finger motif, is mainly expressed in germ cells in the testis. It encodes two alternative transcripts, which regulate androgen receptor-mediated transcriptional activation or repression by overexpression of them. However, the role of Zfp318 is still obscure in vivo, especially in spermatogenesis. To elucidate the role of Zfp318 during gamete production, we established a knockout mouse line. Zfp318-null male mice exhibited infertility, whereas Zfp318-null female mice displayed normal fertility. ZFP318 was expressed during multiple stages of spermatogenesis, from spermatocytes to round spermatids. The nuclei of secondary spermatocytes showed high levels of expression. Histological analysis and quantitative analysis of DNA content showed decreased numbers of both spermatids in the seminiferous tubules and mature spermatozoa in the epididymides of Zfp318-null mice. These results suggest that Zfp318 is expressed as a functional protein in testicular germ cells and plays an important role in meiosis during spermatogenesis

    PROPOSAL OF SINGLE-FLUX-QUANTUM LOGIC DEVICE

    Get PDF
    A new type of logic gate that can be designed using a nonhysteretic Josephson weak link is proposed. The basic component of the proposed device is a one-junction interferometer, and a logic state is represented by either a zero or a single-flux-quantum. In contrast to the “Parametric Quantron,” this device is designed to operate without a three-phase clock and the dependence of the junction critical current on magnetic field is not used. The switching behavior of the device was simulated by computer and an analytical expression for the switching delay has been obtained

    PROPOSAL OF SINGLE-FLUX-QUANTUM LOGIC DEVICE

    No full text
    corecore