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Original Article
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Zfp318, a mouse gene with a Cys2/His2 zinc finger motif, is mainly expressed in germ cells in the testis. It
encodes two alternative transcripts, which regulate androgen receptor-mediated transcriptional activation or
repression by overexpression of them. However, the role of Zfp318 is still obscure in vivo, especially in sper-
matogenesis. To elucidate the role of Zfp318 during gamete production, we established a knockout mouse line.
Zfp318-null male mice exhibited infertility, whereas Zfp318-null female mice displayed normal fertility. ZFP318
was expressed during multiple stages of spermatogenesis, from spermatocytes to round spermatids. The nuclei
of secondary spermatocytes showed high levels of expression. Histological analysis and quantitative analysis of
DNA content showed decreased numbers of both spermatids in the seminiferous tubules and mature sperma-
tozoa in the epididymides of Zfp318-null mice. These results suggest that Zfp318 is expressed as a functional
protein in testicular germ cells and plays an important role in meiosis during spermatogenesis.

Key words: male infertility, sperm count, spermatogenesis, testis, zinc finger.

Introduction

Spermatogenesis is a complicated, well-coordinated
process, with a gene expression program that uses

both transcriptional and translational mechanisms

(Sassone-Corsi 1997; Eddy 2002). Despite the expres-

sion of a large number of different transcription factors

in male germ cells, few have been reported to have

functional significance in spermatogenesis (Eddy

2002). According to more recent reports with gene

knockout technology, Zbtb16/PLZF (Buaas et al.

2004; Costoya et al. 2004), Sox3 (Weiss et al. 2003;

Raverot et al. 2005), and Sohlh1 (Ballow et al. 2006)

are essential for spermatogonial stem cell self-renewal

and mitosis during spermatogenesis. In post-meiotic

germ cell development, CREM-s acts as a switch that

regulates the expression of genes required for haploid

germ cell development (Blendy et al. 1996; Nantel

et al. 1996). TATA box-binding protein-like 1 (TBPL1)
is also required for spermiogenesis, and inactivation of

TBPL1 results in complete arrest of spermiogenesis at

step 7 in stage VII seminiferous tubules (Martianov

et al. 2001).

Testicular zinc finger protein, TZF, is a polypeptide

comprising 924 amino acid residues. It contains a

Cys2/His2 zinc finger motif at the C-terminal end

(Inoue et al. 2000), and its transcript is expressed dur-
ing spermatogenesis (Ishizuka et al. 2003). We desig-

nated the gene as TZF, which is herein referred to as
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Zfp318 according to the Mouse Genome Informatics
nomenclature. Several Cys2/His2 zinc finger proteins

are also expressed at specific stages during mouse

spermatogenesis. For example, deficiency of ZFP105

in pachytene spermatocytes resulted in undifferenti-

ated spermatogenic cells and decreased male fertility

(Zhou et al. 2010). Ovol2/MOVO may play an impor-

tant role in the XY body during spermatogenesis, pos-

sibly in XY body formation and meiotic sex
chromosome inactivation (Chizaki et al. 2012). Gtsf1/

Cue110 is required for spermatogenesis and is

involved in retrotransposon suppression in male germ

cells (Yoshimura et al. 2009). Zmynd15 was recently

identified as a transcriptional repressor that was

essential for spermiogenesis (Yan et al. 2010). We pre-

viously showed that short-form ZFP318 homodimers

act as transcriptional repressors in the regulation of
androgen receptor (AR)-mediated gene transcriptional

activation (Ishizuka et al. 2005; Tao et al. 2006a,b).

Interestingly, long-form ZFP318, an alternative splice

variant of Zfp318, can form both homodimers and het-

erodimers with short-form ZFP318 and acts as a tran-

scriptional activator of AR-mediated gene transcription.

It contains 2025 amino acid residues, and its 902°N-
terminal amino acids are identical to those of short-
form ZFP318. The mRNAs of both splice variants of

Zfp318 are highly expressed in mouse testes, espe-

cially in germ cells (Ishizuka et al. 2003). If both pro-

teins colocalize in spermatocytes, transcriptional

activation and repression may occur depending on the

expression of other proteins. Our previous study

showed that short-form ZFP318 recruits endogenous

histone deacetylase 2 (HDAC2) to suppress AR tran-
scriptional activation, while the long-form ZFP318

homodimer or heterodimer recruits a coactivator com-

plex to activate AR-mediated transcription (Tao et al.

2006b). These results suggest that Zfp318 might func-

tion in mouse spermatogenesis via AR-mediated gene

transcriptional activation. However, the study of cell-

specific AR knockout showed that deletion of the AR

gene in mouse germ cells does not affect spermatoge-
nesis and male fertility (Wang et al. 2009). Therefore,

there is no direct evidence that Zfp318 has any crucial

role in germ cells in spermatogenesis.

To elucidate the function of Zfp318 in spermatoge-

nesis, we here first described the detailed expression

pattern of Zfp318 in mouse testes and established a

Zfp318 knockout mouse line. Zfp318-null mice exhib-

ited male-specific sterility because of a defect in
spermatogenesis. The loss of Zfp318 appeared to

affect meiosis specifically, resulting in a reduced num-

ber of haploid sperm cells. Our current findings sup-

port that Zfp318 is important for mouse

spermatogenesis.

Material and methods

Generation of mutant mice lacking Zfp318

The targeting strategy is shown in supplementary

data (Fig. S1A). 129SvJ ES cell clones carrying the

targeted mutation were injected into C57BL/6 blasto-

cysts, and chimeric male mice were crossed with
C57BL/6 females to establish heterozygous (Zfp318+/

�) mutant lines. We established the congenic strains

of 129SvJ and C57BL/6, which lacked Zfp318, by

backcrossing at least seven generations. Northern

and Southern blot analyses confirmed Zfp318 dele-

tion (Fig. S1B,C). For breeding studies, wild-type

(+/+), heterozygous (+/�), and homozygous (–/–)
male mice (8–10 weeks old each; n = 10) were
caged for 2 weeks with four females (8 weeks old,

ddY mice) each, and pregnancies/deliveries were

recorded. All animal experiments were performed

according to the protocols approved by the Institu-

tional Animal Care and Use Committee of Toin

University of Yokohama.

Western blot analyses

Mouse testes from the congenic strain 129SvJ were

homogenized by a POLYTRON Homogenizer (KINE-

MATICA AG, Lucerne, Switzerland) in TBS supple-

mented with cOmplete Protease Inhibitor Cocktail

(EDTA-free) (Roche, Mannheim, Germany) and treated

with Benzonase Nuclease (Novagen, Billerica, MA,

USA). Proteins were separated by a NuPAGE SDS–
PAGE Gel System using 3–8% Tris-Acetate Gels

(Novex, Carlsbad, CA, USA) and transferred to PVDF

membranes. The anti-ZFP318 antibody (human

ZNF318 antibody; HPA027031, Sigma-Aldrich, Saint

Louis, MO, USA), horse radish peroxidase (HRP)-con-

jugated anti-rabbit IgG (GE, Fairfield, CT, USA), and

ECL Prime (GE) were used for the detection of

ZFP318.

In situ hybridization

The digoxigenin (DIG) antisense and sense Zfp318

riboprobes for in situ hybridization were synthesized

using a DIG RNA Labeling Kit (Roche). The

sequence positions which are specific to short and

long transcripts of Zfp318 were 2825–3122 and
5665–6157, respectively. After being perfused, con-

genic 129SvJ wild-type mouse testes were dis-

sected, fixed with Tissue Fixative (Genostaff, Tokyo,

Japan), and embedded in paraffin according to

standard procedures. Paraffin blocks were sectioned
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at 8-lm thickness. After being treated with pro-
teinase K (10 lg/mL) for 30 min at 37°C, the sec-

tions were post-fixed in 4% paraformaldehyde for

10 min, washed with phosphate-buffered saline

(PBS), and placed in 0.2 mol/L HCl for 10 min.

Then, they were washed with PBS and acetylated

by incubation in 0.1 mol/L triethanolamine and

0.25% acetic anhydride for 10 min. Hybridization

was performed with probes at concentrations of
100 ng/mL in Probe Diluent (Genostaff) at 60°C for

16 h. After treatment with blocking reagent, the

sections were incubated with alkaline phosphatase

(AP)-conjugated anti-DIG antibodies (Roche) diluted

1:1000 with TBST for 2 h. The sections were visu-

alized with BM Purple AP Substrate (Roche) over-

night, and counterstained with Kernechtrot stain

solution (Mutoh, Tokyo, Japan).

Immunohistochemical and histological analysis

The testes from congenic 129SvJ mice were dis-

sected and fixed in Bouin’s fixative for 2 h at room

temperature (RT). The tissues were embedded in

paraffin and then cut into 4-lm-thick sections. For

immunohistochemical analysis, antigens were
retrieved by heating in citrate buffer (pH 6.0), and

sections were incubated with 10% goat serum

(Nichirei, Tokyo, Japan) as blocking solution. The

anti-ZFP318 antibody was diluted to 6 lg/mL in 10%

goat serum. The sections were incubated with the

antibody, washed, and incubated with secondary

antibody (Simple Stain Mouse MAX PO, Nichirei). The

AEC (3-amino- 9-ethylcarbazole) Substrate Kit
(Nichirei) was applied until a red color developed. For

histological analysis, spermatogenesis was examined

in sections stained with hematoxylin and eosin (H&E)

or PAS and hematoxylin. Photomicrographs were

taken with the All-in-One Fluorescence Microscope

system (BZ-8100 and BZ-Analyzer, Keyence). The

seminiferous tubules were staged according to a ref-

erence (Russell et al. 1990).

Preparation of testicular and epididymal cells

Testicular and epididymal cells were prepared as previ-

ously described (Krishnamurthy et al. 2000). Briefly,

the tissues were minced in PBS and gently aspirated

to disperse the cells. The cell suspension was filtered

through a 35-lm nylon mesh, and cells were washed
in PBS. After centrifugation and aspiration, the cells

were resuspended in PBS, fixed in 70% chilled etha-

nol, and stored at 4°C until further analysis. Cells from

the cauda epididymis were prepared and stored in the

same manner.

Quantification of testicular and epididymal cells by

DNA flow cytometry

Mouse testicular and epididymal cells were stained

essentially as described previously (Krishnamurthy

et al. 1998). Briefly, an aliquot of 1 9 106 to 2 9 106

ethanol-fixed testicular and epididymal cells were

washed with PBS and treated with 0.25% pepsin solu-

tion for 10 min at 37°C. After centrifugation, cells were
stained with propidium iodide (PI) staining solution

(25 lg/mL PI, 40 lg/mL RNase, and 0.3% Tween 20

in PBS) at RT for 20 min, filtered through a 35-lm
nylon mesh, and diluted with 0.01% ethylenedi-

aminetetraacetic acid (EDTA) in PBS. The PI-stained

cells were analyzed by flow cytometry with the

FACSVantage (Becton Dickinson, Franklin Jakes, NJ,

USA). The fluorescence signals (absorbance, 620 nm)
of the PI-stained cells were recorded and analyzed

using CellQuest software (Becton Dickinson).

Results

Localization of Zfp318 mRNAs and proteins in mouse

testis

The localization of Zfp318 mRNAs in mouse testes

was determined by in situ hybridization. The hybridiza-

tion signal was associated with the seminiferous

tubules or limited to certain populations of germ cells

for a probe of short-form (Fig. 1A) and long-form

(Fig. 1B) Zfp318, respectively. These signals were

approximately equal between a probe of short-form

and long-form. The long-form Zfp318 signals were
stronger than the short-form. Detailed examination of

positive signals for long-form Zfp318 revealed that

Zfp318 was localized to primary spermatocytes and in

the initial steps of round spermatid formation in the

seminiferous tubules (Fig. 1C) No signal was detected

in spermatogonia, somatic cells, which include Sertoli

cells, peritubular myoid cells, and interstitial cells

(Fig. 1A, B). No hybridization signal was observed
when each sense probe was used as a control. These

splice variants encode two proteins, respectively, com-

prising 902 and 2025 amino acids (12) and containing

a Cys2/His2 zinc finger motif (11). Amino acid

sequence alignment and analysis revealed that

ZFP318 is highly conserved in mice and humans. To

determine ZFP318 localization, we performed immuno-

histochemistry on testis sections using the anti-human
ZNF318 antibody, which recognizes homologous

amino acid sequences of both mouse ZFP318 splice

variants and human ZNF318 (Fig. S2, underlined, 88%

homologous). Results of Western blotting analysis

revealed that this anti-human ZNF318 antibody
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recognized both the mouse ZFP318 variants, and no

non-specific reaction was observed in the extract from

the testis of Zfp318�/� mice (Fig. 2A). Moreover, the

main variant of ZFP318 expressed in mouse testis was

the long-form. Using the antibody, ZFP318 expressed

inside of seminiferous tubules depending on the

stages of spermatogenesis (Fig. 2B). Nucleus-

restricted localization was observed in the germ cells
(Figs 2B and 3). The staining intensity differed depend-

ing on the differentiation of the cells in spermatogene-

sis. Moderate staining was observed in primary

spermatocytes from leptotene to diplotene stages, with

increased intensity in the early pachytene stage

(Fig. 3B, D). Interestingly, the nuclei of secondary sper-

matocytes, a stage between meiosis I and II and

specifically stage XII in the epithelium, showed strong
staining (Fig. 3F). Newly formed round spermatids,

after completion of meiosis II, displayed faint nuclear

staining, which was not apparent in round spermatids

later in spermiogenesis, likely after step 4. Somatic

cells, which include Sertoli cells, peritubular myoid

cells, and interstitial cells, did not show obvious stain-

ing. Strong staining was occasionally observed in the

nuclei of spermatogonia, but it was declared nonspeci-

fic since staining was also observed in the testes from

Zfp318�/� mice.

Characteristics of Zfp318-null mice

To elucidate the role of Zfp318 in spermatogenesis,

we produced Zfp318-null using homologous recombi-

nation in ES cells (Fig. S1). Southern blot analysis of

genomic DNA confirmed insertion of the targeting vec-

tor into the mutant mice (Fig. S1B). Analysis of testicu-

lar RNA and protein from Zfp318�/� mice revealed the

absence of short- and long-form mRNA (Figs S1C,

2A). Zfp318�/� male mice exhibited normal health and
behavior, but 129SvJ males had reduced body, testes,

and epididymal weights. The testes and epididymides

of Zfp318�/� mice at 10 weeks of age were signifi-

cantly reduced, weighing 67.6 � 6.9 mg (n = 10;

22.3% reduction) and 22.0 � 5.2 mg (n = 6; 30.6%

(A)

(C)

(B)

Fig. 1. Localization of Zfp318 mRNA in testis. (A, B) In situ hybridization analysis of Zfp318 mRNA localization in the testes of adult mice

for a short transcript (A) and a long transcript (B). The hybridization signals (blue) are confined to the luminal compartments. (C) Higher

magnification reveals that the long transcript is localized in the nuclei of pachytene spermatocytes through round spermatids. Roman

numerals indicate the stage of the cycle of the mouse seminiferous epithelium. Bars: 50 lm.
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(B)(A)

Fig. 2. Immunohistochemistry of ZFP318. (A) This antibody recognizes both forms of ZFP318 in extract from the normal adult testis.

The long-form ZFP318 is the major splice variant. There is no signals in extract from the Zfp318�/� testis. Anti-GAPDH-HRP detection

and CBBR (Coomassie Brilliant Blue R-250) staining of the same membrane show as a loading control. (B) Normal adult testis immunos-

tained with the antibody and with hemotoxylin. Roman numerals indicate the stage of the cycle of the mouse seminiferous epithelium.

Bar: 50 lm.

(A) (B)

(C) (D)

(E) (F)

Fig. 3. Sections of the normal adult testis

stained with HE (A, C and E) and the

neighboring sections immunostained using

an antibody against ZFP318 (B, D and F).

Roman numerals reveal stage of the cycle

of the mouse seminiferous epithelium.

Positive signals are observed in the nuclei

of spermatogonia (B and F, arrowheads),

of pachytene spermatocytes (B and D,

arrows) and of the secondary spermato-

cytes (F, arrows). Nuclei of round sper-

matids (B, white arrowheads) and of

leptotene spermatocytes (D, arrowheads)

also show weak reactions. Bar: 100 lm.
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reduction), respectively, when compared with those of

wild-type controls, which weighted 87.0 � 5.4 mg

(n = 10) and 31.7 � 2.4 mg (n = 5), respectively. Even
when the significantly lower body weights are adjusted

for (n = 10; ~10% reduction, Fig. 4A), the testes and

epididymides weights of Zfp318�/� male mice

remained significantly decreased (Fig. 4B, C). Further-

more, Zfp318�/� males were infertile, with complete

infertility observed in 129SvJ congenics and subfertility

in C57BL/6 congenics (Table 1). Therefore, 129SvJ

congenic mice were used for the detailed examina-

tions in this study.

Ratio of sperm cells in the testes and epididymides in

Zfp318-null and wild-type mice

As the classical histological examination did not reveal

quantitative changes between the germ cells of

Zfp318+/+ and Zfp318�/� mice, we performed a more

rapid and sensitive analysis of germ cells by

Fig. 4. Zfp318�/� male mice (129SvJ) display reduced body, testes, and epididymides weights and less mature spermatozoa. (A)

Zfp318�/� mice (open circle, n = 10) display approximately 10% reduction in body weight compared to Zfp318+/+ mice (closed circle,

n = 10). (B) Zfp318�/� (10 weeks old) testes display ~22.3% reduction in weight (n = 10). (C) Zfp318�/� (10 weeks old) epididymides

display approximately 30.8% reduction in weight (n = 6). A t-test was used for the evaluation of statistical significance. *P < 0.05,

**P < 0.001. (D, E) Flow cytometric analysis of the DNA content of the whole testis (D) and epididymis (E). (D) 1C, haploid spermatids;

2C, diploid cells at the G1 phase of the cell cycle (mainly Sertoli cells and spermatogonia); 4C, cells at the G2 phase of the cell cycle

(mainly primary spermatocytes). Each panel is representative of four or six animals, with the data averages stated in Results. (E) 1C (ma-

ture), mature haploid spermatids with condensed nuclear DNA; 1C, haploid spermatids; 2C, diploid cells at the G1 phase of the cell

cycle (mainly epithelial cells of the epididymis and spermatogonia). Each panel is representative of three or four animals, with the data

averages stated in Results.

Table 1. Fertility assessment of Zfp31

8-null mice
Genetic background 129SvJ C57BL/6

Genotype +/+ +/� �/� +/+ +/� �/�
Number of animals 10 10 11 10 10 11
Pregnancies/mated females 28/40 32/40 0/44 35/40 34/40 13/44
Average number of
progeny/pregnancy

10.3 11.1 0 11.2 11.3 6.0
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quantitative DNA flow cytometry. Figure 4D depicts
representative histograms of PI-stained testicular cells.

Based on the DNA content, three quantifiable popula-

tions were discernible: spermatids (1C), secondary

spermatocytes and spermatogonia, testicular somatic

cells (2C), primary spermatocytes, and G2 spermato-

gonia (4C). Analysis of testicular cells revealed that

Zfp318�/� mice exhibited a significant decrease in 1C

cells (15.4 � 2.2% versus 19.9 � 2.7%, P < 0.05)
and significant increases in 2C (12.3 � 1.7% vs

6.0 � 2.0%, P < 0.05) and 4C (7.7 � 1.0% vs

3.4 � 0.8%, P < 0.001) cells when compared with

Zfp318+/+ mice. Figure 4E contains representative his-

tograms of PI-stained epididymal cells. The histograms

elucidated the detection of an additional population

with a lower DNA content: elongated and mature sper-

matids (1C (mature)). Analysis of epididymal cells

revealed that Zfp318�/� mice exhibited a significant
decrease in 1C (mature) cells (15.7 � 7.1% versus

37.3 � 10.0%, P < 0.05) when compared with

Zfp318+/+ mice. A new population, which was absent

from Zfp318+/+ mice, called 1C (4.5 � 1.6%), was

seen in Zfp318�/� mice.

Impaired spermatogenesis in Zfp318-null mice

Histological examination of the testis revealed no obvi-

ous abnormality in the spermatogenesis of Zfp318+/�

mice (data not shown). Zfp318�/� mice, however,

exhibited defects in spermatogenesis (Fig. 5B, D). As

spermiogenesis proceeded, fewer elongated sper-

matids with malformed nuclei were observed in the

seminiferous epithelium. Vacuoles were sporadically

observed in the epithelium, indicating degeneration

(A) (B)

(C) (D)

(a) (b) (d)(c)

(E) (F)

Fig. 5. Histological analysis of testes and

epididymides of the Zfp318�/� mouse.

PAS-hematoxylin-stained sections of

testes (A-D) and caput epididymides (E

and F). Depicted areas in A–D are

enlarged in a–d, respectively. Roman

numerals in A and C show the stage of

the cycle of the mouse seminiferous

epithelium. Seminiferous tubules in B and

D were regarded as the corresponding

stage of A and C, respectively. The wild-

type male shows normal testicular mor-

phology (A and C), whereas the mutant

testis shows affected spermatogenesis

including vacuole formation (B, asterisk)

and sparsely located elongated sper-

matids (D). Note the cells with the large

nuclei (b and d, arrowheads) among the

normal round spermatids (arrows), com-

parable to those of pachytene spermato-

cytes (b and d, white arrowheads).

Accumulation of the sperm is seen in the

lumen of the wild-type epididymal duct

(E). Sloughed germ cells with few sperm

are observed in the mutant (F). Bars:

50 lm.
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and dissolution of germ cells (Fig. 5B). Additionally,
irregular sized nuclei with similar morphology to those

of the round spermatids were detected in the layer of

the spermatids in the epithelium (Fig. 5a–d). The

nuclear diameter of the cells was comparable to those

of pachytene spermatocytes that co-existed in the

epithelium. The abnormal cells with larger nuclei, eval-

uated mainly by the co-existing spermatogonia and

spermatocytes, were detected in the epithelium at
stages I to V of the cycle, but not in the later stages of

the epithelium. The impaired spermatogenesis of the

mutant mice was evidenced with little accumulation of

the sperm containing sloughed germ cells in the lumen

of the epididymal duct (Fig. 5F).

Discussion

We generated and analyzed the male reproductive

phenotype of Zfp318-null mice, and the results indi-

cate that the gene is indispensable for proper sper-

matogenesis, and hence, male fertility.

Spermatogenesis proceeded normally up to the meio-

sis prophase just before the spermatozoa morphogen-

esis steps. Round to elongated spermatids exhibited

nuclear malformation from the first step onwards, and
completed spermatozoa were decreased in number.

We have previously demonstrated that Zfp318 germ

cell-specific transcripts first appear at post-natal day

16, as spermatocytes enter meiotic prophase (Ishizuka

et al. 2003). In this study, the expression of these tran-

scripts was observed from pachytene spermatocytes

at meiotic prophase to the initial steps of round sper-

matids in seminiferous tubules, suggesting that Zfp318
is involved primarily in meiosis, and the protein expres-

sion had the same distribution. The nuclei of

secondary spermatocytes showed strong staining,

which was diminished in the later stages of round

spermatids and elongated spermatids. Therefore,

ZFP318 was not a component of spermatozoa but

may act as a regulatory factor of meiosis or a tran-

scriptional factor of genes required in spermiogenesis.
Because no developmental difference was observed

until that of secondary spermatocytes between wild-

type and Zfp318-null testes, the essential role of

ZFP318 in spermatogenesis appears to involve meio-

sis. Quantitative DNA flow cytometry was conducted

to further investigate the role of ZFP318 in the regula-

tion of spermatogenesis. The quantities of primary (4C)

and secondary (2C) spermatocytes increased, while
spermatids (1C) decreased. Histological examination

also revealed the morphological changes related to

this phenomenon, including irregularly sized nuclei of

the round spermatids and malformation of the nuclei

of spermatids. These results also suggest a meiosis-
promoting function of the gene.

The two splice variants of Zfp318 are nuclear pro-

teins that alternatively function as coactivator and

corepressor of AR (Tao et al. 2006a). However, the

deletion of the AR gene in mouse germ cells does

not affect spermatogenesis and male fertility (Wang

et al. 2009). AR-mediated transcriptional activation in

germ cells is not essential for spermatogenesis. Wes-
tern blotting showed that both the splice variants of

Zfp318 were expressed in testicular germ cells, with

the main variant being the long-form. These results

suggest that long-form homodimers of ZFP318 could

be part of a coactivator complex for transcriptional

activation of nuclear receptors other than AR.

ZFP318 has one (short-form) or two (long-form) U-1

like zinc finger domains which can directly bind to
DNA without AR. Moreover, once considered to func-

tion exclusively as sequence-specific DNA-binding

motifs, zinc-fingers are now known to also recognize

RNA and other proteins (Gamsjaeger et al. 2007).

Recently, Zfp318 was identified by genetic screen in

mice as a transacting factor responsible for expres-

sion of IgD, the alternatively spliced Igh product made

by mature B lymphocytes (Enders et al. 2014; Pioli
et al. 2014). Indeed, our Zfp318-null mice extin-

guished IgD expression on mature B cells and

increased IgM (Enders et al. 2014). ZFP318 also has

a conserved domain concerning chromosome segre-

gation protein (PRK03918) or tumor suppressor,

trichoplein or mitostatin, was first defined as a meio-

sis-specific nuclear structural protein (pfam13868)

(Vecchione et al. 2009), which has a crucial role in
MT-anchoring activity at the centrosome in proliferat-

ing cells (Ibi et al. 2011). Although ZFP318 seems

to play an important role progressing meiosis in sper-

matogenesis, further study will be need to show

if ZFP318 functions as a meiosis-specific nuclear

structural protein.
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