54 research outputs found

    Unconventional Model for Dynein-Driven Movement

    Get PDF

    Mammalian Lgl Forms a Protein Complex with PAR-6 and aPKC Independently of PAR-3 to Regulate Epithelial Cell Polarity

    Get PDF
    AbstractBackground: Epithelial cells have apicobasal polarity and an asymmetric junctional complex that provides the bases for development and tissue maintenance. In both vertebrates and invertebrates, the evolutionarily conserved protein complex, PAR-6/aPKC/PAR-3, localizes to the subapical region and plays critical roles in the establishment of a junctional complex and cell polarity. In Drosophila, another set of proteins called tumor suppressors, such as Lgl, which localize separately to the basolateral membrane domain but genetically interact with the subapical proteins, also contribute to the establishment of cell polarity. However, how physically separated proteins interact remains to be clarified.Results: We show that mammalian Lgl competes for PAR-3 in forming an independent complex with PAR-6/aPKC. During cell polarization, mLgl initially colocalizes with PAR-6/aPKC at the cell-cell contact region and is phosphorylated by aPKC, followed by segregation from apical PAR-6/aPKC to the basolateral membrane after cells are polarized. Overexpression studies establish that increased amounts of the mLgl/PAR-6/aPKC complex suppress the formation of epithelial junctions; this contrasts with the previous observation that the complex containing PAR-3 promotes it.Conclusions: These results indicate that PAR-6/aPKC selectively interacts with either mLgl or PAR-3 under the control of aPKC activity to regulate epithelial cell polarity

    Relationships between Composition of Major Fatty Acids and Fat Distribution and Insulin Resistance in Japanese

    Get PDF
    Objective. The aim of this study was to evaluate the relationships between the composition of free fatty acids (FFAs) and metabolic parameters, including body fat distribution, in Japanese. Methods. The study subjects were 111 Japanese patients (54 males, 57 females). Metabolic parameters and visceral and subcutaneous fat areas as determined by CT scanning at the umbilical level were measured. Glucose tolerance test (GTT) was performed by administering 75 g glucose orally. Results. The percentage of linoleic acid (C18:2), the greatest constituent among FFAs, was negatively correlated with visceral fat area (r = −0 411, p < 0 0001), fasting glucose (r = −0 330, p < 0 0001), HbA1c (r = −0 231, p = 0 0146), and systolic blood pressure (r = −0 224, p = 0 0184). Linoleic acid percentage was also significantly negatively correlated with HOMA-IR (r = −0 416, p < 0 0001) by simple correlation. Based on the findings of OGTT, the 111 subjects were classified into three groups: 33 with normal glucose tolerance, 71 with impaired glucose tolerance (IGT), and 7 diabetic subjects. The percentage of serum linoleic acid in diabetic subjects was significantly lower than that in normal subjects. Conclusion. We conclude that serum linoleic acid level is negatively correlated with the accumulation of visceral fat in relation to a reduction of insulin resistance in Japanese subjects

    Hayabusa2’s superior solar conjunction mission operations: planning and post-operation results

    Get PDF
    Abstract In late 2018, the asteroid Ryugu was in the Sun’s shadow during the superior solar conjunction phase. As the Sun-Earth-Ryugu angle decreased to below 3°, the Hayabusa2 spacecraft experienced 21 days of planned blackout in the Earth-probe communication link. This was the first time a spacecraft had experienced solar conjunction while hovering around a minor body. For the safety of the spacecraft, a low energy transfer trajectory named Ayu was designed in the Hill reference frame to increase its altitude from 20 to 110 km. The trajectory was planned with the newly developed optNEAR tool and validated with real time data. This article shows the results of the conjunction operation, from planning to flight data.</jats:p

    CRISPRa-mediated NEAT1 lncRNA upregulation induces formation of intact paraspeckles

    Get PDF
    Long noncoding RNAs (lncRNAs) are fundamental genomic regulatory factors under various physiological and pathological conditions. A class of lncRNAs termed architectural RNAs (arcRNAs) plays an essential scaffolding role in building nuclear bodies. NEAT1 arcRNA is an abundant, nuclear-retained lncRNA that constructs paraspeckle nuclear bodies. NEAT1 is upregulated in various developmental and disease conditions including cancer and virus infection. However, it remains unclear how elevated expression of NEAT1 influences such conditions. Here, we set up an experimental method to selectively increase NEAT1 expression. We applied the synergistic activation mediator (SAM) system using catalytically dead Cas9 (dCas9) proteins to activate transcription of the NEAT1 gene. We examined 10 pre-designed and 15 originally designed single-guide RNAs (sgRNAs) in the NEAT1 promoter region for CRISPR activation (CRISPRa). We validated several sgRNAs that we designed for the SAM system to strongly activate NEAT1 expression in two human cell lines and induced formation of paraspeckles with intact core-shell structures. Thus, this selective NEAT1 upregulation method using the SAM system would be useful for further functional analyses of NEAT1 lncRNA in both basic and applied research

    金星探査機「あかつき」軌道計画2015年VOIに向けた軌道計画と、現在の観測軌道・姿勢計画の紹介

    No full text

    An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    No full text
    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well

    Dynein pulls microtubules without rotating its stalk

    Get PDF
    Dynein is a microtubule motor that powers motility of cilia and flagella. There is evidence that the relative sliding of the doublet microtubules is due to a conformational change in the motor domain that moves a microtubule bound to the end of an extension known as the stalk. A predominant model for the movement involves a rotation of the head domain, with its stalk, toward the microtubule plus end. However, stalks bound to microtubules have been difficult to observe. Here, we present the clearest views so far of stalks in action, by observing sea urchin, outer arm dynein molecules bound to microtubules, with a new method, “cryo-positive stain” electron microscopy. The dynein molecules in the complex were shown to be active in in vitro motility assays. Analysis of the electron micrographs shows that the stalk angles relative to microtubules do not change significantly between the ADP·vanadate and no-nucleotide states, but the heads, together with their stalks, shift with respect to their A-tubule attachments. Our results disagree with models in which the stalk acts as a lever arm to amplify structural changes. The observed movement of the head and stalk relative to the tail indicates a new plausible mechanism, in which dynein uses its stalk as a grappling hook, catching a tubulin subunit 8 nm ahead and pulling on it by retracting a part of the tail (linker)
    corecore