130 research outputs found

    Suzaku Detection of Extended/Diffuse Hard X-Ray Emission from the Galactic Center

    Full text link
    Five on-plane regions within +/- 0.8deg of the Galactic center were observed with the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS) onboard Suzaku. From all regions, significant hard X-ray emission was detected with HXD-PIN up to 40 keV, in addition to the extended plasma emission which is dominant in the XIS band. The hard X-ray signals are inferred to come primarily from a spatially extended source, rather than from a small number of bright discrete objects. Contributions to the HXD data from catalogued X-ray sources, typically brighter than 1 mCrab, were estimated and removed using information from Suzaku and other satellites. Even after this removal, the hard X-ray signals remained significant, exhibiting a typical 12--40 keV surface brightness of 4E-10 erg cm-2 s-1 deg-2 and power-law-like spectra with a photon index of 1.8. Combined fittings to the XIS and HXD-PIN spectra confirm that a separate hard tail component is superposed onto the hot thermal emission, confirming a previous report based on the XIS data. Over the 5--40 keV band, the hard tail is spectrally approximated by a power law of photon index ~2, but better by those with somewhat convex shapes. Possible origins of the extended hard X-ray emission are discussed.Comment: 13 pages, 18 figure

    Iron and Nickel Line Diagnostics for the Galactic Center Diffuse Emission

    Get PDF
    We have observed the diffuse X-ray emission from the Galactic center (GC) using the X-ray Imaging Spectrometer (XIS) on Suzaku. The high-energy resolution and the low-background orbit provide excellent spectra of the GC diffuse X-rays (GCDX). The XIS found many emission lines in the GCDX near the energy of K-shell transitions of iron and nickel. The most pronounced features are FeI K alpha at 6.4 keV and K-shell absorption edge at 7.1 keV, which are from neutral and/or low ionization states of iron, and the K-shell lines at 6.7 keV and 6.9 keV from He-like (FeXXV K alpha) and hydrogenic (FeXXVI Ly alpha) ions of iron. In addition, K alpha lines from neutral or low ionization nickel (NiI K alpha) and He-like nickel (NiXXVII K alpha), and FeI K beta, FeXXV K beta, FeXXVI Ly beta, FeXXV K gamma and FeXXVI Ly gamma are detected for the first time. The line center energies and widths of FeXXV K alpha and FeXXVI Ly alpha favor a collisional excitation (CE) plasma for the origin of the GCDX. The electron temperature determined from the line flux ratio of FeXXV K alpha / FeXXV K beta is similar to the ionization temperature determined from that of FeXXV K alpha /FeXXVI Ly alpha. Thus it would appear that the GCDX plasma is close to ionization equilibrium. The 6.7 keV flux and temperature distribution to the galactic longitude is smooth and monotonic,in contrast to the integrated point source flux distribution. These facts support the hypothesis that the GCDX is truly diffuse emission rather than the integration of the outputs of a large number of unresolved point sources. In addition, our results demonstrate that the chemical composition of Fe in the interstellar gas near the GC is constrained to be about 3.5 times solar.Comment: 11 pages, 19 figures. Accepted for publication in PASJ Suzaku Special Issue (vol. 59 sp. 1

    Induced-fit expansion and contraction of a self-assembled nanocube finely responding to neutral and anionic guests

    Get PDF
    Induced-fit or conformational selection is of profound significance in biological regulation. Biological receptors alter their conformation to respond to the shape and electrostatic surfaces of guest molecules. Here we report a water-soluble artificial molecular host that can sensitively respond to the size, shape, and charged state of guest molecules. The molecular host, i.e. nanocube, is an assembled structure consisting of six gear-shaped amphiphiles (GSAs). This nanocube can expand or contract its size upon the encapsulation of neutral and anionic guest molecules with a volume ranging from 74 to 535 Å3 by induced-fit. The responding property of this nanocube, reminiscent of a feature of biological molecules, arises from the fact that the GSAs in the nanocubes are connected to each other only through the hydrophobic effect and very weak intermolecular interactions such as van der Waals and cation-π interactions

    Induced-fit expansion and contraction of a self-assembled nanocube finely responding to neutral and anionic guests

    Get PDF
    Induced-fit or conformational selection is of profound significance in biological regulation. Biological receptors alter their conformation to respond to the shape and electrostatic surfaces of guest molecules. Here we report a water-soluble artificial molecular host that can sensitively respond to the size, shape, and charged state of guest molecules. The molecular host, i.e. nanocube, is an assembled structure consisting of six gear-shaped amphiphiles (GSAs). This nanocube can expand or contract its size upon the encapsulation of neutral and anionic guest molecules with a volume ranging from 74 to 535 Å3 by induced-fit. The responding property of this nanocube, reminiscent of a feature of biological molecules, arises from the fact that the GSAs in the nanocubes are connected to each other only through the hydrophobic effect and very weak intermolecular interactions such as van der Waals and cation-π interactions.UTokyo FOCUS Press releases掲載「取り込む分子の大きさ・形・電荷に応答して膨らんだり縮んだりする分子カプセル」<研究成果> URI: https://www.u-tokyo.ac.jp/focus/ja/press/z0109_00048.htmlUTokyo FOCUS Press releases "Don’t underestimate the Force Researchers discover weak chemical interactions hold together box of infinite possibilities" URI: https://www.u-tokyo.ac.jp/focus/en/press/z0508_00014.htm

    Live visualisation of electrolytes during mouse embryonic development using electrolyte indicators

    Get PDF
    Studies have shown that some electrolytes, including Na+ and K+, play important roles in embryonic development. However, these studies evaluated these electrolytes by using inhibitors or knockout mice, with no mention on the changes in the intracellular electrolyte concentrations during embryogenesis. In this study, we used the electrolyte indicators CoroNa Green AM and ION Potassium Green-2 AM to directly visualise intracellular concentrations of Na+ and K+, respectively, at each embryonic developmental stage in mouse embryos. We directly observed intracellular electrolyte concentrations at the morula, blastocyst, and hatching stages. Our results revealed dynamic changes in intracellular electrolyte concentrations; we found that the intracellular Na+ concentration decreased, while K+ concentration increased during blastocoel formation. The degree of change in intensity in response to ouabain, an inhibitor of Na+/K+ ATPase, was considered to correspond to the degree of Na+/K+ ATPase activity at each developmental stage. Additionally, after the blastocyst stage, trophectoderm cells in direct contact with the blastocoel showed higher K+ concentrations than in direct contact with inner cell mass, indicating that Na+/K+ ATPase activity differs depending on the location in the trophectoderm. This is the first study to use CoroNa Green AM and ION Potassium Green-2 AM in mouse embryos and visualise electrolytes during embryonic development. The changes in electrolyte concentration observed in this study were consistent with the activity of Na+/K+ ATPase reported previously, and it was possible to image more detailed electrolyte behaviour in embryo cells. This method can be used to improve the understanding of cell physiology and is useful for future embryonic development studies

    Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone

    Get PDF
    To evaluate the effects of inorganic mercury (InHg) and methylmercury (MeHg) on bone metabolism in a marine teleost, the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) as indicators of such activity in osteoclasts and osteoblasts, respectively, were examined in scales of nibbler fish (Girella punctata). We found several lines of scales with nearly the same TRAP and ALP activity levels. Using these scales, we evaluated the influence of InHg and MeHg. TRAP activity in the scales treated with InHg (10-5 and 10-4 M) and MeHg (10-6 to 10-4 M) during 6 hrs of incubation decreased significantly. In contrast, ALP activity decreased after exposure to InHg (10-5 and 10-4 M) and MeHg (10-6 to 10-4 M) for 18 and 36 hrs, although its activity did not change after 6 hrs of incubation. As in enzyme activity 6 hrs after incubation, mRNA expression of TRAP (osteoclastic marker) decreased significantly with InHg and MeHg treatment, while that of collagen (osteoblastic marker) did not change significantly. At 6 hrs after incubation, the mRNA expression of metallothionein, which is a metal-binding protein in osteoblasts, was significantly increased following treatment with InHg or MeHg, suggesting that it may be involved in the protection of osteoblasts against mercury exposure up to 6 hrs after incubation. To our knowledge, this is the first report of the effects of mercury on osteoclasts and osteoblasts using marine teleost scale as a model system of bone. © 2014 Zoological Society of Japan

    High-level expression by tissue/cancer-specific promoter with strict specificity using a single-adenoviral vector

    Get PDF
    Tissue-/cancer-specific promoters for use in adenovirus vectors (AdVs) are valuable for elucidating specific gene functions and for use in gene therapy. However, low activity, non-specific expression and size limitations in the vector are always problems. Here, we developed a ‘double-unit’ AdV containing the Cre gene under the control of an α-fetoprotein promoter near the right end of its genome and bearing a compact ‘excisional-expression’ unit consisting of a target cDNA ‘upstream’ of a potent promoter between two loxPs near the left end of its genome. When Cre was expressed, the expression unit was excised as a circular molecule and strongly expressed. Undesired leak expression of Cre during virus preparation was completely suppressed by a dominant-negative Cre and a short-hairpin RNA against Cre. Using this novel construct, a very strict specificity was maintained while achieving a 40- to 90-fold higher expression level, compared with that attainable using a direct specific promoter. Therefore, the ‘double-unit’ AdV enabled us to produce a tissue-/cancer-specific promoter in an AdV with a high expression level and strict specificity
    corecore