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ARTICLE

Induced-fit expansion and contraction of a self-
assembled nanocube finely responding to neutral
and anionic guests
Yi-Yang Zhan1, Tatsuo Kojima1, Takashi Nakamura 1,4, Toshihiro Takahashi1, Satoshi Takahashi1,

Yohei Haketa2, Yoshiaki Shoji 3, Hiromitsu Maeda2, Takanori Fukushima 3 & Shuichi Hiraoka 1

Induced-fit or conformational selection is of profound significance in biological regulation.

Biological receptors alter their conformation to respond to the shape and electrostatic sur-

faces of guest molecules. Here we report a water-soluble artificial molecular host that can

sensitively respond to the size, shape, and charged state of guest molecules. The molecular

host, i.e. nanocube, is an assembled structure consisting of six gear-shaped amphiphiles

(GSAs). This nanocube can expand or contract its size upon the encapsulation of neutral and

anionic guest molecules with a volume ranging from 74 to 535 Å3 by induced-fit. The

responding property of this nanocube, reminiscent of a feature of biological molecules, arises

from the fact that the GSAs in the nanocubes are connected to each other only through the

hydrophobic effect and very weak intermolecular interactions such as van der Waals and

cation-π interactions.
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Induced-fit or conformational selection is a general strategy
to attain a tight binding between a molecular host and
guest(s)1–10, to induce signal transduction11–15, and to confer

allosteric regulation through conformational changes upon
binding16–23. As often seen in biological receptors, conforma-
tional flexibility that enables molecular hosts to respond to the
shape and electrostatic surface of guest molecules is a general
requirement for induced-fit binding. Most of artificial molecular
hosts possessing a confined binding site are rigid structures whose
conformational change upon binding of guest molecule(s) is
smaller than that in biological receptors. Recently, we reported a
cube-shaped molecular assembly, i.e., nanocube, from six mole-
cules of gear-shaped amphiphiles (GSAs) such as 1Cl2 (Fig. 1a) in
water24–26. The structure of this nanocube is formed and main-
tained by only meshing between the GSAs, for which very weak,
non-directional van der Waals (vdW) and cation-π interactions
are responsible. Since the relative position of the GSAs is not
much restricted, a variety of hydrophobic guest molecules with
different molecular size and shape are expected to be accom-
modated in a nanospace (ca. 1 nm3) surrounded by hydrogen
atoms on the aromatic rings of the GSAs. Furthermore, a poly-
cationic character of the nanocube due to the pyridinium groups
may facilitate encapsulation of charge-dispersed anionic species,
whose binding must nevertheless overcome the energy required
to release the water molecules around the anions27–38.

Here we report the expansion and contraction of a water-
soluble artificial molecular host that responds to the size, shape,
and charged state of guest molecules with a calculated volume
ranging from 74 to 535 Å3. The encapsulation of neutral mole-
cules in the nanocube always causes the expansion. On the other
hand, when anionic species are encapsulated, the nanocube
shrinks responding to the negative charge of the guests. Thus, the
response of the nanocube to guest molecules depends not only on
the size and shape of the guests but also on their charged state.

Results
Structure of nanocube 16. The structure of the nanocube belongs
to the S6 point group. All the six GSAs in the nanocube are
chemically equivalent but the symmetry of each GSA in the
nanocube is reduced to be the C1 point group, indicating that the
three p-tolyl methyl groups (red methyl groups in Fig. 1a) of each
1 in the nanocube are chemically inequivalent (signals marked
with red solid circles in Fig. 2). The structure of the nanocube is
interpreted by comparing it to the Earth (Fig. 1b). One of the
methyl groups in 1 (MeP in Fig. 1b) is placed around the north or
the south pole, while the others (MeE in Fig. 1b) are placed near
the equator. 1H NMR signals of these p-tolyl methyl groups are
observed in the upfield region due to the shielding effect caused
by the neighboring aromatic rings in the nanocube24, so the
chemical shift of the p-tolyl methyl signals is a good indicator to
assess the molecular meshing between the GSAs in the nanocube.

Expansion of nanocube 16. When neutral, hydrophobic aliphatic
(C3–C24) and aromatic molecules were added in an aqueous
solution of 16Cl12, a further desymmetrization of the three p-tolyl
methyl signals was not observed though the symmetry of the
guest molecules is not the same as that of the nanocube, indi-
cating the faster tumbling of the guest molecule(s) in the nano-
cube than the NMR timescale. (Fig. 2 and Supplementary Figs. 1–
6). The aromatic region of the 1H NMR spectra of the nanocube
encapsulating the guests also changed, suggesting a slight struc-
tural change of the nanocube by induced-fit. All the signals for
the guest molecules shifted to downfield by ca. 0.8 ppm, com-
pared with those of free guest molecules in CD3OD (Supple-
mentary Fig. 10) due to the deshielding effect caused by the

aromatic rings of the GSAs, where the phenylene groups of the
propeller-shaped hexaphenylbenzene framework are nearly per-
pendicular to the faces of the nanocube. The smallest guest
molecule encapsulated is n-propane (74 Å3), three molecules of
which were cooperatively encapsulated in the nanocube, while the
largest one is n-tetracosane (535 Å3) (A list of guest molecules
encapsulated is shown in Supplementary Table 1).

Considering the fact that the molecular lengths of long alkanes
with all anti configuration (e.g., 15.7 Å for decane) are longer
than the side of the inner space of the nanocube (ca. 10 Å), long
linear alkanes must be folded so as to be properly encapsulated in
the cavity. However, only two kinds of 1H NMR signals for all the
alkanes (the terminal methyl groups (1.90 ppm) and all
methylenes (2.33 ppm)) were observed (Supplementary Figs. 3–
6), which does not tell anything about the conformation of the
guest molecules in the nanocube, suggesting that even though

6 =

Me Me

Me

Me Me

2Cl–

1Cl2
Gear-shaped amphiphile

(GSA)

Anionic
guest

In water

a

b

16
Nanocube

Neutral
guest

Expansion Contraction

N N

Methyl groups around the
North Pole (MeP): i1 signal

Methyl groups near
the equator (MeE): i2

and i3 signals

Methyl groups around
the South Pole (MeP): i1

signal

The South Pole

The North
Pole

S6-axis

Southern
Hemisphere Northern

Hemisphere

The equator

+
+

Fig. 1 The expansion and contraction feature of the nanocube. a The
expansion and contraction of the 16Cl12 nanocube assembled from six
molecules of 1Cl2 by neutral and anionic guests, respectively. b Schematic
representation of the structure of the nanocube. The signals i1–i3 indicate
the chemically inequivalent p-tolyl methyl 1H NMR signals of the nanocube
in Fig. 2
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long linear alkanes adopt a folded conformation, the environment
of all the methylene protons are magnetically equivalent in the
NMR timescale. This result is different from the previous finding
that coiled alkanes are encapsulated in an artificial molecular
capsule39. The size and shape of the nanocube cavity should allow
the guest molecules to adopt a variety of different folding
patterns. Aromatic molecules from one molecule of [2.2]
paracyclophane (PC) (248 Å3) to two molecules of perylene
(PE) (508 Å3) were also encapsulated in the nanocube. These
results indicate the high adaptability of the nanocube to a wide
range of molecular size of guests.

Induced-fit expansion of the nanocube by neutral guest
molecules is confirmed by 1H DOSY spectroscopy. The logD
value of the nanocube encapsulating two molecules of 1,3,5-
tribromomesitylene (TBM), –9.96, is slightly smaller than that of
the empty nanocube, –9.89 (Supplementary Fig. 11), indicating
the expansion of the nanocube upon the encapsulation of TBM
by loosening the molecular meshing between the GSAs. The
volume of the TBM2@16 estimated from the hydrodynamic
radius determined by 1H DOSY, 18 Å, is 24,000 Å3, which is 1.7
times larger than that of the free nanocube (14,000 Å3).
Interestingly, a sum of the chemical shift changes of the three
p-tolyl methyl signals (i1–i3 in Fig. 2) linearly correlates to the
total volume of the guest molecules (Fig. 3a), suggesting that the
nanocube expands its inner space to properly accommodate the
guests. A 1H-1H NOESY cross peak between i2 and i3 was
observed (Supplementary Fig. 15), indicating that i2 and i3 are the
p-tolyl methyl groups near the equator (MeE) and that the other
one (i1) is around the north or the south pole (MeP). In the cases
where two molecules of anthracene and two molecules of
perylene (PE) were encapsulated in the nanocube, large chemical
shift changes of MeP (i1) were observed (Fig. 3b), suggesting a
large distortion around the poles by the encapsulation of a rodlike
or a large planar molecule with the longest side of 12 Å. This is
consistent with the previous finding that the molecular meshing

around the equator is stronger than that around the poles40,41. In
every case, a further desymmetrization of the nanocube upon the
complexation was not observed by 1H NMR spectroscopy,
indicating that the tumbling motion of the guest molecule(s) in
the nanocube is much faster than the NMR timescale.

Variable-temperature 1H NMR spectroscopy indicates that the
thermal stability of the nanocube became higher by binding of
neutral guests and depended on the volume of the guests (Table 1,
Supplementary Table 2, and Supplementary Figs. 18–21). TBM
stabilized the nanocube best. A larger guest than TBM, perylene
(PE), stabilized the nanocube less sufficiently than TBM,
indicating that guest molecules with a total volume of about
450 Å3 are the best for the stabilization of the nanocube.

Contraction of nanocube 16. Next, the encapsulation of anionic
species was investigated (Fig. 2). The titration experiment indi-
cated that two molecules of pentacyanocyclopentadienide (PCCP)
were cooperatively encapsulated in the nanocube (Supplementary
Fig. 7). When NaPCCP was added in a solution of the nanocube,
the p-tolyl methyl signals slightly shifted to upfield, even though
the total volume of two molecules of PCCP (386 Å3) is slightly
smaller than the volume of decamethylferrocene (DF) (407 Å3)
(Fig. 3a and Supplementary Fig. 7). A similar upfield shift of the
p-tolyl methyl signals was observed by the encapsulation of one
molecule of CHB11Cl11– (CB) (403 Å3) (Fig. 3a and Supple-
mentary Fig. 8)42. 1H DOSY spectroscopy of a solution of a
mixture of PCCP2@16 and 16 indicated that the logD value of
PCCP2@16, –9.85, is larger than that of 16, –9.89 (Supplementary
Fig. 12). The molecular volume of PCCP2@16 estimated from its
hydrodynamic radius (14 Å) is 11500 Å3, which is about half of
that of TBM2@16 (24000 Å3). The longitudinal relaxation time
(T1) of the p-tolyl methyl protons of PCCP2@16, 2.56 s, is longer
than that of 16, 2.15 s (Supplementary Table 3), indicating that
the motion of the GSAs of the PCCP2@16 is restricted upon the
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Fig. 2 1H NMR spectra of the host-guest complexation between the nanocube and guest molecules (500MHz, D2O, 298 K). Red solid circles indicate the
p-tolyl methyl signals (i1, i2, and i3). Blue solid circles indicate the signals for guest molecules encapsulated in the nanocube. The most downfield-shifted
four signals (DF@16 and PE2@16) derived from the protons neighboring nitrogen atoms of the N-methylpyridinium groups in 16 disappeared through the H/
D exchange with D2O upon heating at 90 °C24
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contraction of the nanocube.43–45 These results indicate that the
nanocube shrunk upon binding of anionic guests, which is
probably due to the electrostatic interactions between the nano-
cube with twelve positive charges and the anionic guests. As
expected, cationic molecules such as tetra-n-butylammonium
(446 Å3) were not encapsulated in the nanocube (Supplementary
Fig. 9). As a consequence, the nanocube recognizes the size,
shape, and charged state of guest molecules to slightly alter its
structure (expansion, contraction, and/or distortion) as a
response upon binding.

As NaPCCP and CsCB are soluble in water, ITC titration
experiments were carried out to determine the thermodynamic
parameters of the binding of the anionic guests in the nanocube
(Supplementary Fig. 23), which enabled us to discuss the driving
force of the encapsulation. In the case of PCCP, the binding
constants for the first binding ðPCCPþ 16$PCCP@16Þ and the
second binding ðPCCPþ PCCP@16$PCCP2@16Þ are K1=
6.8 × 105 M–1 and K2= 4.1 × 106 M–1, respectively, indicating

positive cooperativity, which is consistent with the 1H NMR
titration experiment. As all the ionic species are well solvated, the
effect of counter ions is negligible. The first binding exhibits
highly negative enthalpy and entropy changes (ΔH298= –57.5
kcal mol–1, ΔS298= –166 cal mol–1 K–1), which could be partly
due to the chaotropic effect46. The introduction of electron-
withdrawing groups in the cyclopentadienyl anion causes
dispersion of the π electrons to lead to high polarizability of
PCCP as seen in ClO4

–. Upon the encapsulation of such
chaotropic anions in the nanocube, the reformation of the water
molecules that surrounded the anions restores hydrogen bonds
between water molecules to make more ordered water network.
Moreover, stronger electrostatic and vdW interactions between
PCCP and the nanocube than the hydration of PCCP and the
release of energetically destabilized water molecules in the cavity
of the nanocube upon binding of PCCP also account for the large
negative enthalpy change47,48. The entropic disadvantage is due
to conformational fixation of the GSAs by the induced-fit
contraction of the nanocube. The second binding is enthalpically
disfavored (ΔH298= 2.4 kcal mol–1) because of the electrostatic
repulsion between the two negatively charged PCCP molecules
close in vicinity in the cavity of the nanocube, so encapsulation of
the second PCCP molecule was promoted by entropy (ΔS298=
38.2 cal mol–1 K–1). Electrostatic attractions in water are generally
favored entropically due to desolvation of the structured water
molecules around ionic species49,50. As the entropic loss arising
from the induced-fit binding has already been paid in the first
binding, the desolvation of water molecules around ions
mentioned above would mainly contribute to the second binding.
As to the encapsulation of CB, the binding constant is 1.46 × 107

M–1, which is about 20 times higher than the first binding
constant for PCCP. The large negative enthalpy and entropy
changes (ΔH298= –68.8 kcal mol–1, ΔS298= –198 cal mol–1 K–1)
indicate a similar binding event to the first binding of PCCP. The
stronger binding for CB than for PCCP is because larger and
higher polarizable CB restores more hydrogen bonds between
water molecules and makes stronger vdW interactions between
CB and the nanocube upon binding.

As the nanocube shrinks upon binding of anionic guests, the
anionic species and the six GSAs in the host-guest complexes
more tightly bind than the neutral guests and the six GSA, higher
thermal stability of the nanocube is expected by binding of
anionic guest(s). Indeed, the formation ratio of PCCP2@16 (6
[PCCP2@16]/[1]= 60) at 130 °C is higher than that of TBM2@16
(6[TBM2@16]/[1]= 30) at the same temperature (Supplementary
Fig. 22), indicating that the PCCP2@16 nanocube is thermally
more stable than the TBM2@16 nanocube.
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Fig. 3 Chemical shift change of the p-tolyl methyl signals. a Plots of total
chemical shift changes of the p-tolyl methyl signals (the sum of chemical
shift changes of the three p-tolyl methyl signals) upon the encapsulation of
guest molecules. Red and blue solid circles indicate neutral and anionic
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guest molecules tested are summarized in Supplementary Table 1

Table 1 Disassembly temperatures (T1/2) for the 16
nanocubes with or without guests

Nanocube Total guest
volume (Å3)

T1/2a (°C) Formation ratio (6
[guest(s)@16]/[1]) at
150 °C

16 0 130 –
PC@16 248 140 –
DU2@16 348 145 –
DF@16 407 >150b 2
TBM2@16 440 >150b 4
PE2@16 508 143 –

aT1/2 is the temperature at which half of the nanocubes are disassembled into the monomers
determined by variable temperature 1H NMR spectroscopy ([1]total= 1.0 mM, D2O, in a sealed
pressure tube)
bThe exact T1/2 could not be determined because of the temperature limit of the instrument
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Discussion
In conclusion, a fine structural change of the nanocube
responding to the size, shape, and charged state of various guest
molecules, whose volume ranges from 74 to 535 Å3, has been
demonstrated. Neutral guest molecules induced the expansion of
the nanocube, while anionic guests the contraction of the nano-
cube due to electrostatic interaction between the polycationic host
and the anionic guest(s) to lead to tight host-guest complexes.
The nanocube can alter the size of its inner space from 14 Å
(11500 Å3) to 18 Å (24000 Å3) depending on the size and the
charged state of guest molecules. This high induced-fit property
of the nanocube is because the GSAs in the nanocube are not
connected by directional chemical bonds but only by molecular
meshing, where vdW and cation-π interactions and the hydro-
phobic effect contribute to the adhesive force between the GSAs.
In biological systems, not large but fine conformational changes
precisely responding to the input (guest) are inevitable to trans-
port signals to other molecules. Although vdW interactions are
the weakest molecular interaction between atoms and has often
been underestimated, one of the reasons why vdW interactions
are well utilized in biological systems would be because vdW
interactions endow assembled structures with a sensitive
responding property.

Methods
General. 1H and other 2D NMR spectra were recorded using a Bruker AV-500
(500MHz) spectrometer. A high pressure valved NMR tube (TCI, S-5-500-HW-
HPV-7) was used for variable temperature 1H NMR measurements over 100 °C in
D2O. All reagents were obtained from commercial suppliers (TCI Co., Ltd., WAKO
Pure Chemical Industries Ltd., KANTO Chemical Co., Inc., and Sigma-Aldrich
Co.) and were used as received. 1 was prepared according to the literature24.

Host-guest complexation between 16 and guest molecules. For the encapsu-
lation of liquid guests not soluble in water, 1 μL of guest was added via a syringe to
a D2O solution of 16 ([1]= 1.0 mM, 600 μL) in an NMR tube. The suspension was
mixed by inverting the NMR tube 4 times and sonicated for 5 min. For the
encapsulation of solid guests not soluble in water, 1 mg of guest was added to a
D2O solution of 16 ([1]= 1.0 mM, 600 µL) in an NMR tube. The suspension was
heated at 70 °C overnight. For large hydrophobic guest molecules, heating at 90 °C
was required for the completion of the encapsulation. During heating of the sus-
pension, the hydrogen atoms neighboring the positively charged nitrogen atoms of
the N-methylpyridinium rings of 1 were exchanged with deuterium atoms24. For
1,3,5-triiodomesitylene, the hydrogen atoms on the N-methyl groups of 1 were also
exchanged with deuterium atoms through the very long heating. For the encap-
sulation of gaseous molecules, guest molecules were added through bubbling in a
D2O solution of 16 ([1]= 1.0 mM, 600 μL) for 2 min. The stoichiometries between
16 and the guest except the anionic guests, PCCP (pentacyanocyclopentadienide)
and CB (CHB11Cl11–), were determined by the integrals of the 1H NMR signals of
the encapsulated guest. As to PCCP and CB, the stoichiometry between 16 and the
encapsulated anionic guest was determined by titration experiment using the 1H
NMR signals for the nanocube encapsulating the anionic guest. 1H NMR spectra of
host-guest complexes of 16 are provided in Supplementary Figs. 1–10 and details
on encapsulation behavior of 16 are summarized in Supplementary Table 1. 1H
DOSY NMR spectra of host-guest complexes of 16 are provided in Supplementary
Figs. 11–12.

Determination of the positions of three p-tolyl methyl groups in 16. All the
proton signals derived from 16 were assigned based on 1H-1H COSY and 1H-1H
NOESY spectra (Supplementary Figs. 13–15). The positions of p-tolyl methyl
groups, i1, i2, and i3 were further determined by the intermolecular NOE cross-
peaks and geometry-optimized structure of 16 (Supplementary Figs. 16 and 17).

Determination of disassembly temperatures (T1/2) of host-guest complexes
of 16. Disassembly temperature (T1/2) of the nanocubes, at which half of the
nanocubes are disassembled into the monomers, was determined by variable
temperature 1H NMR measurements to compare the integral values of the p-tolyl
methyl signals for the host-guest complexes of 16 and for the monomer GSA. 1H
NMR spectra are provided in Supplementary Figs. 18–22 and the data are provided
in Supplementary Table 2.

Dilution ITC experiments. Dilution isothermal titration calorimetry (ITC)
experiments were conducted on a Malvern MicroCal iTC200. Titration curves are
provided in Supplementary Fig. 23.

Relaxation measurements. Longitudinal relaxation times (T1) of the monomer
GSA, 1, and the 16 and PCCP2@16 nanocubes are provided in Supplementary
Table 3.

Data availability
The authors declare that all the other data supporting the findings of this study are
available within the Article and its Supplementary Information files and from the
corresponding author upon request.
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