56 research outputs found

    Ensemble tractography

    Get PDF
    Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unido

    Holonomic Gradient Descent and its Application to Fisher-Bingham Integral

    Full text link
    We give a new algorithm to find local maximum and minimum of a holonomic function and apply it for the Fisher-Bingham integral on the sphere SnS^n, which is used in the directional statistics. The method utilizes the theory and algorithms of holonomic systems.Comment: 23 pages, 1 figur

    Automated Delineation of Visual Area Boundaries and Eccentricities by a CNN Using Functional, Anatomical, and Diffusion-weighted MRI Data

    Get PDF
    Delineating visual field maps and iso-eccentricities from fMRI data is an important but time-consuming task for many neuroimaging studies on the human visual cortex because the traditional methods of doing so using retinotopic mapping experiments require substantial expertise as well as scanner, computer, and human time. Automated methods based on gray-matter anatomy or a combination of anatomy and functional mapping can reduce these requirements but are less accurate than experts. Convolutional Neural Networks (CNNs) are powerful tools for automated medical image segmentation. We hypothesize that CNNs can define visual area boundaries with high accuracy. We trained U-Net CNNs with ResNet18 backbones to predict either V1, V2, and V3 boundaries or 5 regions of iso-eccentricity using human-labeled maps. Separate CNNs were trained to predict these regions using different combinations of the following input data: (1) anatomical data from a T1-weighted image only, (2) anatomical data from T1-weighted and T2*-weighted images, (3) white-matter tract endpoints from diffusion-weighted imaging, (4) functional data from retinotopic mapping. All CNNs using functional data had cross-validated accuracy that was statistically indistinguishable from the inter-rater reliability of the training dataset (dice coefficient of 92%) while the CNNs lacking functional data had lower but similar accuracies (~75%). Existing models that do not use CNNs had accuracies lower than any of the CNNs. These results demonstrate that with current methods and data quality, CNNs can replace the time and effort of human experts in manually defining early retinotopic maps, but cannot yet replace the acquisition of functional data

    Current-induced magnetization switching in MgO barrier magnetic tunnel junctions with CoFeB based synthetic ferrimagnetic free layers

    Full text link
    We investigated the effect of using a synthetic ferrimagnetic (SyF) free layer in MgO-based magnetic tunnel junctions (MTJs) on current-induced magnetization switching (CIMS), particularly for application to spin-transfer torque random access memory (SPRAM). The employed SyF free layer had a Co40Fe40B20/ Ru/ Co40Fe40B20 and Co20Fe60B20/Ru/Co20Fe60B20 structures, and the MTJs(100x(150-300) nm^2) were annealed at 300oC. The use of SyF free layer resulted in low intrinsic critical current density (Jc0) without degrading the thermal-stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature,respectively). When the two CoFeB layers of a strongly antiferromagnetically coupled SyF free layer had the same thickness, Jc0 was reduced to 2-4x10^6 A/cm^2. This low Jc0 may be due to the decreased effective volume under the large spin accumulation at the CoFeB/Ru. The E/kBT was over 60, resulting in a retention time of over ten years and suppression of the write current dispersion for SPRAM. The use of the SyF free layer also resulted in a bistable (parallel/antiparallel) magnetization configuration at zero field, enabling the realization of CIMS without the need to apply external fields to compensate for the offset field.Comment: 6 page

    Stimulus-Dependent Adjustment of Reward Prediction Error in the Midbrain

    Get PDF
    Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward prediction error signal in the brain updates reward prediction through stimulus–reward experiences. It remains unknown, however, how sensory processing of reward-predicting stimuli contributes to the computation of reward prediction error. To elucidate this issue, we examined the relation between stimulus discriminability of the reward-predicting stimuli and the reward prediction error signal in the brain using functional magnetic resonance imaging (fMRI). Before main experiments, subjects learned an association between the orientation of a perceptually salient (high-contrast) Gabor patch and a juice reward. The subjects were then presented with lower-contrast Gabor patch stimuli to predict a reward. We calculated the correlation between fMRI signals and reward prediction error in two reinforcement learning models: a model including the modulation of reward prediction by stimulus discriminability and a model excluding this modulation. Results showed that fMRI signals in the midbrain are more highly correlated with reward prediction error in the model that includes stimulus discriminability than in the model that excludes stimulus discriminability. No regions showed higher correlation with the model that excludes stimulus discriminability. Moreover, results show that the difference in correlation between the two models was significant from the first session of the experiment, suggesting that the reward computation in the midbrain was modulated based on stimulus discriminability before learning a new contingency between perceptually ambiguous stimuli and a reward. These results suggest that the human reward system can incorporate the level of the stimulus discriminability flexibly into reward computations by modulating previously acquired reward values for a typical stimulus

    Computational neuroanatomy of human stratum proprium of interparietal sulcus

    Get PDF
    Recent advances in diffusion-weighted MRI (dMRI) and tractography have enabled identification of major long-range white matter tracts in the human brain. Yet, our understanding of shorter tracts, such as those within the parietal lobe, remains limited. Over a century ago, a tract connecting the superior and inferior parts of the parietal cortex was identified in a post-mortem study: stratum proprium of interparietal sulcus (SIPS; Sachs, Das hemisphärenmark des menschlichen grosshirns. Verlag von georg thieme, Leipzig, 1892). The tract has since been replicated in another fibre dissection study (Vergani et al., Cortex 56:145–156, 2014), however, it has not been fully investigated in the living human brain and its precise anatomical properties are yet to be described. We used dMRI and tractography to identify and characterise SIPS in vivo, and explored its spatial proximity to the cortical areas associated with optic-flow processing using fMRI. SIPS was identified bilaterally in all subjects, and its anatomical position and trajectory are consistent with previous post-mortem studies. Subsequent evaluation of the tractography results using the linear fascicle evaluation and virtual lesion analysis yielded strong statistical evidence for SIPS. We also found that the SIPS endpoints are adjacent to the optic-flow selective areas. In sum, we show that SIPS is a short-range tract connecting the superior and inferior parts of the parietal cortex, wrapping around the intraparietal sulcus, and that it may be a crucial anatomy underlying optic-flow processing. In vivo identification and characterisation of SIPS will facilitate further research on SIPS in relation to cortical functions, their development, and diseases that affect them

    Code and data for Masuda et al. "V1 projection zone signals in human macular degeneration depend on task despite absence of visual stimulus."

    No full text
    fMRI study on task-dependency of tactile- and auditory-induced V1 BOLD response in human macular degeneration
    corecore