30 research outputs found

    Positron emission tomography assessments of phosphodiesterase 10A in patients with schizophrenia

    Get PDF
    [Background and hypothesis] Phosphodiesterase 10A (PDE10A) is a highly expressed enzyme in the basal ganglia, where cortical glutamatergic and midbrain dopaminergic inputs are integrated. Therapeutic PDE10A inhibition effects on schizophrenia have been reported previously, but the status of this molecule in the living patients with schizophrenia remains elusive. Therefore, this study aimed to investigate the central PDE10A status in patients with schizophrenia and examine its relationship with psychopathology, cognition, and corticostriatal glutamate levels. [Study design] This study included 27 patients with schizophrenia, with 5 antipsychotic-free cases, and 27 healthy controls. Positron emission tomography with [18F]MNI-659, a specific PDE10A radioligand, was employed to quantify PDE10A availability by measuring non-displaceable binding potential (BPND) of the ligand in the limbic, executive, and sensorimotor striatal functional subregions, and in the pallidum. BPND estimates were compared between patients and controls while controlling for age and gender. BPND correlations were examined with behavioral and clinical measures, along with regional glutamate levels quantified by the magnetic resonance spectroscopy. [Study results] Multivariate analysis of covariance demonstrated a significant main effect of diagnosis on BPND (p = .03). A posthoc test showed a trend-level higher sensorimotor striatal BPND in patients, although it did not survive multiple comparison corrections. BPND in controls in this subregion was significantly and negatively correlated with the Tower of London scores, a cognitive subtest. Striatal or dorsolateral prefrontal glutamate levels did not correlate significantly with BPND in either group. [Conclusions] The results suggest altered striatal PDE10A availability and associated local neural dysfunctions in patients with schizophrenia

    Loss of yata, a Novel Gene Regulating the Subcellular Localization of APPL, Induces Deterioration of Neural Tissues and Lifespan Shortening

    Get PDF
    Background: The subcellular localization of membrane and secreted proteins is finely and dynamically regulated through intracellular vesicular trafficking for permitting various biological processes. Drosophila Amyloid precursor protein like (APPL) and Hikaru genki (HIG) are examples of proteins that show differential subcellular localization among several developmental stages. Methodology/Principal Findings: During the study of the localization mechanisms of APPL and HIG, we isolated a novel mutant of the gene, CG1973, which we named yata. This molecule interacted genetically with Appl and is structurally similar to mouse NTKL/SCYL1, whose mutation was reported to cause neurodegeneration. yata null mutants showed phenotypes that included developmental abnormalities, progressive eye vacuolization, brain volume reduction, and lifespan shortening. Exogenous expression of Appl or hig in neurons partially rescued the mutant phenotypes of yata. Conversely, the phenotypes were exacerbated in double null mutants for yata and Appl. We also examined the subcellular localization of endogenous APPL and exogenously pulse-induced APPL tagged with FLAG by immunostaining the pupal brain and larval motor neurons in yata mutants. Our data revealed that yata mutants showed impaired subcellular localization of APPL. Finally, yata mutant pupal brains occasionally showed aberrant accumulation of Sec23p, a component of the COPII coat of secretory vesicles traveling from the endoplasmic reticulum (ER) to the Golgi

    Benzodiazepines Reduce Relapse and Recurrence Rates in Patients with Psychotic Depression

    No full text
    The long-term use of benzodiazepines is not recommended for the treatment of major depressive disorder (MDD) due to the risk of adverse effects, including dependence, falls, dementia, mortality and the lack of evidence of effectiveness for symptoms other than anxiety. However, there are many patients with MDD for whom antidepressants are co-administrated with benzodiazepines. This study aimed to identify whether the use of benzodiazepines is associated with a lower risk of relapse or recurrence of MDD in some patients, and the characteristics of these patients. Kaplan–Meier survival analysis was used to quantify the relapse and recurrence of MDD in 108 patients with MDD who achieved remission during hospitalization. Among them, 26 patients had been diagnosed with severe MDD with psychotic features. There was no significant difference in the rate of relapse/recurrence between patients with and without benzodiazepines when all patients were analyzed together. However, among the 26 patients with psychotic depression, 21.2% in the benzodiazepine group and 75.0% in the non-benzodiazepine group experienced relapse (log rank p = 0.0040). Kaplan–Meier survival analysis revealed that this effect was dose-dependent. The adjunctive use of benzodiazepines may reduce relapse/recurrence rates in patients with severe MDD with psychotic features

    Sox2 transcriptionally regulates PQBP1, an intellectual disability-microcephaly causative gene, in neural stem progenitor cells.

    Get PDF
    PQBP1 is a nuclear-cytoplasmic shuttling protein that is engaged in RNA metabolism and transcription. In mouse embryonic brain, our previous in situ hybridization study revealed that PQBP1 mRNA was dominantly expressed in the periventricular zone region where neural stem progenitor cells (NSPCs) are located. Because the expression patterns in NSPCs are related to the symptoms of intellectual disability and microcephaly in PQBP1 gene-mutated patients, we investigated the transcriptional regulation of PQBP1 by NSPC-specific transcription factors. We selected 132 genome sequences that matched the consensus sequence for the binding of Sox2 and POU transcription factors upstream and downstream of the mouse PQBP1 gene. We then screened the binding affinity of these sequences to Sox2-Pax6 or Sox2-Brn2 with gel mobility shift assays and found 18 genome sequences that interacted with the NSPC-specific transcription factors. Some of these sequences had cis-regulatory activities in Luciferase assays and in utero electroporation into NSPCs. Furthermore we found decreased levels of expression of PQBP1 protein in NSPCs of heterozygous Sox2-knockout mice in vivo by immunohistochemistry and western blot analysis. Collectively, these results indicated that Sox2 regulated the transcription of PQBP1 in NSPCs

    Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity

    No full text
    Non-cell-autonomous effect of mutant proteins expressed in glia has been implicated in several neurodegenerative disorders, whereas molecules mediating the toxicity are currently not known. We identified a novel molecule named multiple α-helix protein located at ER (Maxer) downregulated by mutant ataxin-1 (Atx1) in Bergmann glia. Maxer is an endoplasmic reticulum (ER) membrane protein interacting with CDK5RAP3. Maxer anchors CDK5RAP3 to the ER and inhibits its function of Cyclin D1 transcription repression in the nucleus. The loss of Maxer eventually induces cell accumulation at G1 phase. It was also shown that mutant Atx1 represses Maxer and inhibits proliferation of Bergmann glia in vitro. Consistently, Bergmann glia are reduced in the cerebellum of mutant Atx1 knockin mice before onset. Glutamate-aspartate transporter reduction in Bergmann glia by mutant Atx1 and vulnerability of Purkinje cell to glutamate are both strengthened by Maxer knockdown in Bergmann glia, whereas Maxer overexpression rescues them. Collectively, these results suggest that the reduction of Maxer mediates functional deficiency of Bergmann glia, and might contribute to the non-cell-autonomous pathology of SCA1

    Nematode Homologue of PQBP1, a Mental Retardation Causative Gene, Is Involved in Lipid Metabolism

    Get PDF
    Background: PQBP1 is a causative gene for X-linked mental retardation (MR) whose patients frequently show lean body. C. elegans has a strictly conserved homologue gene of PQBP1, T21D12.3. Methodology and Principal Findings: We generated Venus-transgenic and T21D12.3-mutant nematodes to analyze developmental expression patterns and in vivo functions of the nematode PQBP1 homologue protein (pqbp-1.1). During development, pqbp-1.1 is expressed from cell proliferation stage to larva stage. In larva, intestinal cells show the highest expression of pqbp-1.1, while it decreases in adult worms. The mutants of pqbp-1.1 show a decrease of the lipid content in intestinal cells. Especially, incorporation of fatty acid into triglyceride is impaired. ShRNA-mediated repression of PQBP1 also leads to reduction of lipid content in mammalian primary white adipocytes. Conclusion / Significance: These results suggest that pqbp-1.1 is involved in lipid metabolism of intestinal cells. Dysfunction of lipid metabolism might underlie lean body, one of the most frequent symptoms associating with PQBP1-linked M

    Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1

    No full text
    Ataxin-1, linked to spinocerebellar ataxia type 1, is known to interact with the orphan nuclear receptor RORα. Here, Fujita and colleagues show that genetic supplementation of RORα-interacting protein YAPdeltaC during early development can rescue the adult pathologies of SCA1 mouse model
    corecore