60 research outputs found

    Population health and regional variations of disease burden in Japan, 1990–2015:a systematic subnational analysis for the Global Burden of Disease Study 2015

    Get PDF
    BackgroundJapan has entered the era of super-ageing and advanced health transition, which is increasingly putting pressure on the sustainability of its health system. The level and pace of this health transition might vary across regions within Japan and concern is growing about increasing regional variations in disease burden. The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) provides a comprehensive, comparable framework. We used data from GBD 2015 with the aim to quantify the burden of disease and injuries, and to attribute risk factors in Japan at a subnational, prefecture-level.MethodsWe used data from GBD 2015 for 315 causes and 79 risk factors of death, disease, and injury incidence and prevalence to measure the burden of diseases and injuries in Japan and in the 47 Japanese prefectures from 1990 to 2015. We extracted data from GBD 2015 to assess mortality, causes of death, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), life expectancy, and healthy life expectancy (HALE) in Japan and its 47 prefectures. We split extracted data by prefecture and applied GBD methods to generate estimates of burden, and attributable burden due to known risk factors. We examined the prefecture-level relationships of common health system inputs (eg, health expenditure and workforces) to the GBD outputs in 2015 to address underlying determinants of regional health variations.FindingsLife expectancy at birth in Japan increased by 4·2 years from 79·0 years (95% uncertainty interval [UI] 79·0 to 79·0) to 83·2 years (83·1 to 83·2) between 1990 and 2015. However, the gaps between prefectures with the lowest and highest life expectancies and HALE have widened, from 2·5 to 3·1 years and from 2·3 to 2·7 years, respectively, from 1990 to 2015. Although overall age-standardised death rates decreased by 29·0% (28·7 to 29·3) from 1990 to 2015, the rates of mortality decline in this period substantially varied across the prefectures, ranging from -32·4% (-34·8 to -30·0) to -22·0% (-20·4 to -20·1). During the same time period, the rate of age-standardised DALYs was reduced overall by 19·8% (17·9 to 22·0). The reduction in rates of age-standardised YLDs was very small by 3·5% (2·6 to 4·3). The pace of reduction in mortality and DALYs in many leading causes has largely levelled off since 2005. Known risk factors accounted for 34·5% (32·4 to 36·9) of DALYs; the two leading behavioural risk factors were unhealthy diets and tobacco smoking in 2015. The common health system inputs were not associated with age-standardised death and DALY rates in 2015.InterpretationJapan has been successful overall in reducing mortality and disability from most major diseases. However, progress has slowed down and health variations between prefectures is growing. In view of the limited association between the prefecture-level health system inputs and health outcomes, the potential sources of regional variations, including subnational health system performance, urgently need assessment.FundingBill & Melinda Gates Foundation, Japan Ministry of Education, Science, Sports and Culture, Japan Ministry of Health, Labour and Welfare, AXA CR Fixed Income Fund and AXA Research Fund

    カクシュ リンサン セリウム ノ セイセイ ニ オヨボス ニョウソ テンカ コウカ

    Get PDF
    Urea (CO(NH_2)_2) was added in the system of phosphoric acid (H_3PO_4) and cerium carbonate (Ce_2(CO_3)_3・8H_2O), and the system of phosphoric acid and cerium oxide (CeO_2). The thermal behaviors of these dried mixtures were estimated by differential thermal analyses, X-ray diffraction, and Fourier - transform infrared spectroscopy. Furthermore, specific surface area of phosphates was calculated by BET method using nitrogen adsorption. In P/Ce = 1/1, the addition of urea made specific surface area of cerium orthophosphate larger. The formation of tetra-valent cerium phosphates was suppressed by the addition of urea

    A phase II study of amrubicin and carboplatin for previously untreated patients with extensive-disease small cell lung cancer

    Get PDF
    Background: Amrubicin is active in the treatment of extensive-disease small cell lung cancer (ED-SCLC), and carboplatin is an analogue of cisplatin with less non-hematological toxicity. Purpose: The purpose of this study was to determine the efficacy and toxicity of amrubicin and carboplatin combination chemotherapy for previously untreated patients with ED-SCLC. Patients and methods: Eligibility criteria were chemotherapy-naive ED-SCLC patients, performance status 0-1, age ?75, and adequate hematological, hepatic and renal function. Based on the phase I study, the patients received amrubicin 35 mg/m2 i.v. infusion on days 1, 2, and 3, and carboplatin AUC 5 i.v. infusion on day 1. Four cycles of chemotherapy were repeated every 3 weeks. Results: Thirty-five patients were enrolled, and 34 patients were eligible and assessable for response, toxicity, and survival. Patients\u27 characteristics were as follows: male/female = 26/8; performance status 0/1 = 4/30; median age (range) = 64 (41-75); stage IV = 34. Evaluation of responses was 6 complete response, 21 partial response, and 7 stable disease (response rate 79.4 %, 95 % CI 63.6-88.5 %). Grade 3 and 4 leukopenia, neutropenia, and thrombocytopenia occurred in 59, 82, and 26 %, respectively. There were no treatment-related deaths or pneumonitis. Three patients experienced hypotension as an amrubicin infusion reaction. The median progression-free survival time was 6.5 months. The median overall survival time and 1-, 2-, and 3-year survival rates were 15.6 months, and 63, 28, and 7 %, respectively. Conclusions: Amrubicin and carboplatin were effective and tolerable as chemotherapy for previously untreated patients with ED-SCLC. Further investigation of amrubicin and carboplatin is warranted

    Homogenous hydrothermal synthesis of calcium phosphate with calcium carbonate and corbicula shells

    Get PDF
    In this work, we prepared calcium phosphate by a general homogenous hydrothermal process, either from commercial calcium carbonate and phosphoric acid, or from corbicula shells and phosphoric acid. The chemical composition and properties of the resulting products were also investigated. Commercial calcium carbonate and corbicula shells reacted with phosphoric acid to produce calcium hydrogen phosphate and hydroxyapatite via a homogeneous hydrothermal process. The chemical composition of the products was influenced by both processing temperature as well as time. The compositions themselves influenced the substitution of calcium with iron and the absorption of trimethylamine gas

    Synthesis of novel green phosphate pigments in imitation of natural ores

    No full text
    As novel green pigment, various sodium iron phosphates, Na4Fe7(PO4)6, NaFe4(PO4)3, and Fe3(PO4)2, imitated with Xenophillite and Vivianite, were synthesized using a hydrothermal process. The obtained powders were estimated with X-ray diffraction (XRD), Infrared (IR) spectra, ultraviolet–visible (UV–vis) reflectance spectra, and L*a*b* color space. The hydrothermal temperature and time, volume of water, phosphorus resource were studied in this process. All samples prepared in this work were dark green powders. The weak peaks of Na4Fe7(PO4)6 and Fe3(PO4)2 were observed in XRD patterns of all samples. Hydrothermal treatment of a long duration produced high greenish powders. The large volume of water used improved the greenish and bluish colors of the phosphate powders

    Influence of Temperature and Ultrasonic Treatment on Preparation of Titanium Phosphates and Their Powder Properties

    No full text
    Catalytically active titanium dioxide is conventionally used as a white pigment for cosmetics, but undesirably induces a certain degree of decomposition of sebum on the skin on exposure to ultraviolet radiation in sunlight. In this work, titanium phosphates were prepared as a novel white pigment for cosmetics using titanium sulfate and phosphoric acid at various temperatures, with/without ultrasonic treatment. The chemical composition, powder properties, photocatalytic activity, color phase, moisture retention, and smoothness of the phosphates were evaluated. These titanium phosphates had less photocatalytic activity than titanium dioxide, which should be beneficial for protecting sebum on the skin. Samples prepared with ultrasonic treatment had lower visible light absorption than those not subjected to ultrasonication. The sample prepared at 40 °C with ultrasonic treatment had higher moisture retention capacity than those prepared under other conditions. Samples prepared at 40 °C had lower slipping resistance than samples prepared at 7 °C

    Influence of concentration in phosphoric acid treatment of titanium oxide and their powder properties

    No full text
    Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with various concentrations of phosphoric acid to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide; however, these peak intensities became weak by phosphoric acid treatment. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment to protect the sebum on the skin. The high concentration of phosphoric acid was suitable to obtain a novel white pigment in the phosphoric acid treatment of titanium oxide

    SYNTHESIS OF NOVEL COSMETIC WHITE PIGMENT BY CONDENSED PHOSPHORIC ACID TREATMENT OF ZINC OXIDE

    No full text
    Zinc oxide is used as a white pigment in cosmetics, but has the disadvantage of having photocatalytic activity. A certain amount of sebum on the skin is decomposed by ultraviolet rays in sunlight due to the photocatalytic activity of this cosmetic, causing damage to the skin. In this study, a new white pigment for cosmetics was prepared by shaking a mixture of zinc oxide and various condensed phosphate solutions or condensed phosphoric acid to react the surface of zinc oxide to phosphate. The chemical composition, particle size distribution, photocatalytic activity, hue, and smoothness of the resulting powder materials were examined. The condensed phosphoric acid treatment caused some of the zinc oxide to react with the zinc phosphate. The reaction was relatively advanced in the samples prepared in a protonated solution. Most of the sample powders were of a size suitable for white pigments for cosmetics. The condensed phosphoric acid treatment suppressed the photocatalytic activity of the zinc oxide. The obtained samples had sufficiently high reflectance in the visible light range. Judging from the particle size and the photocatalytic activity, the sample prepared with polyphosphoric acid is most suitable as a white pigment for cosmetics
    corecore