17 research outputs found

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Get PDF
    publication en ligne. Article dans revue scientifique avec comité de lecture. nationale.National audienceThe human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    細胞傷害性T細胞による抗腫瘍免疫応答を誘導するiPS細胞由来GM-CSF産生抗原提示細胞の開発

    Get PDF
    広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora

    Clinical significance of glypican-3-positive circulating tumor cells of hepatocellular carcinoma patients: A prospective study.

    No full text
    The utility of glypican-3 (GPC3) expression for the detection of circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC) patients has not been elucidated. The aim of this study was to identify associations between the presence of GPC3-positive CTCs and clinicopathological factors of these patients, furthermore, to evaluate whether CTC can predict microscopic portal vein invasion (mPVI). This study was done on 85 patients who underwent hepatectomy as the first-line treatment and whose preoperative imaging showed no evidence of macroscopic PVI and distant metastases. Peripheral blood was collected from all patients immediately before surgery. Cells were purified initially by density gradient centrifugation followed by immunomagnetic positive enrichment based upon the expression of GPC3. The numbers of CTCs contained in the enriched samples were enumerated via flow cytometry. Protocol validation using HepG2 cells spiked into 8.0 mL of blood from a healthy volunteer indicated that we were able to recover 12.1% of the tumor cells. A median number of 3 CTCs (range: 0-27) was detected in the 8.0 mL of peripheral blood of the 85 analyzed HCC patients. Thirty-three patients had CTCs ≥5, and these patients had a higher incidence of mPVI (p < 0.001), a lower disease-free survival (p = 0.015), and a lower overall survival (p = 0.047) than those with CTCs <5. Multivariate analysis identified CTCs ≥5 as an independent predictor of mPVI (p < 0.001). In conclusion, preoperative GPC3-positive CTCs ≥5 was a risk factor of mPVI and poor prognosis, and therefore may be a useful biomarker for HCC patient outcomes

    PD1 gene polymorphism is associated with a poor prognosis in hepatocellular carcinoma following liver resection, cohort study

    Get PDF
    Background This study examined whether single nucleotide polymorphism (SNP) in programmed cell death protein (PD)-1 is related to the postoperative prognosis of patients with hepatocellular carcinoma (HCC). The immune checkpoint protein PD-1 is an important inhibitor of T cell responses. SNP in the promoter region of PD-1 -606 G/A has been reported to result in high activation and expression of PD-1 associated with cancer risk. Materials and methods We analyzed 321 patients with HCC who underwent hepatectomy between 2010 and 2015. PD-1 SNP was analyzed by polymerase chain reaction, and the prognosis after surgical treatment of patients with HCC was analyzed. Results The PD-1 SNP statuses were as follows: 90 AA (28.1%), 163 GA (50.8%), 68 GG (21.2%). The baseline parameters did not statistically differ between the three groups. The overall survival (OS) of patients with the GG genotype was significantly lower than that of those with the other genotypes (P = 0.031). The GG genotype was an independent risk factor for OS (P = 0.009; HR 2.201). There was no significant difference between the GG genotype and other genotypes in recurrent-free survival. The extrahepatic recurrence (EHR) rate of those with the GG genotype was significantly higher than that of those with the other genotypes (P = 0.036). The GG genotype was an independent risk factor for EHR (P = 0.008; HR 2.037). Conclusions The PD-1 SNP GG genotype is associated with poor survival and increased EHR in HCC. Furthermore, the GG genotype is an independent predictive factor for OS and EHR.This research was supported by AMED under Grant Number JP18fk0210007h0003 and by JSPS KAKENHI Grant Number JP 18K08706
    corecore