45 research outputs found

    The Current and Future Therapies of Bone Regeneration to Repair Bone Defects

    Get PDF
    Bone defects often result from tumor resection, congenital malformation, trauma, fractures, surgery, or periodontitis in dentistry. Although dental implants serve as an effective treatment to recover mouth function from tooth defects, many patients do not have the adequate bone volume to build an implant. The gold standard for the reconstruction of large bone defects is the use of autogenous bone grafts. While autogenous bone graft is the most effective clinical method, surgical stress to the part of the bone being extracted and the quantity of extractable bone limit this method. Recently mesenchymal stem cell-based therapies have the potential to provide an effective treatment of osseous defects. In this paper, we discuss both the current therapy for bone regeneration and the perspectives in the field of stem cell-based regenerative medicine, addressing the sources of stem cells and growth factors used to induce bone regeneration effectively and reproducibly

    Molecular mechanisms of BMP-induced bone formation: Cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis

    Get PDF
    Osteoblasts are bone-forming cells that differentiate from mesenchymal stem cells. Differentiation processes are coordinately and dynamically controlled in the mesenchymal cells by specific signal transduction pathways. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, induce not only bone formation in vivo, but also osteoblast differentiation of mesenchymal cells in vitro. BMP signals are transduced from plasma membrane receptors to the nucleus through both Smad-dependent and -independent pathways, and are regulated by many extracellular and intercellular proteins that interact with BMPs or components of BMP signaling pathways. To understand the molecular mechanisms underlying the role of BMPs in osteoblast differentiation, it is important to elucidate the BMP signaling transduction pathways that are active during osteoblast differentiation. In this review, we summarize the BMP signaling pathways that are known to function in osteoblast development. We also describe our recent findings regarding the molecular mechanisms underlying the cross-talk between BMP/Smad and NF-κB pathways in osteoblast differentiation

    The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition “Killing Two Birds with One Stone”?

    No full text
    Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the “classical pathway”, and cytokines involved in lymph node formation, such as CD40L, activate the “alternative pathway”. NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to “killing two birds with one stone”: it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration

    Surgical Sealing of Laterally Localized Accessory Root Canal with Resin Containing S-PRG Filler in Combination with Non-Surgical Endodontic Treatment: A Case Report

    No full text
    The spread of root canal infection to surrounding periodontal tissue through accessory root canals reduces the success rate of endodontic treatment. In this case, cone-beam computed tomography revealed a lesion (4 mm from the apex) resulting from an accessory root canal of the maxillary left central incisor. First, non-surgical endodontic treatment was conducted but the sinus tract remained. Surgical preparation of the root cavity was then conducted to remove potentially infected dentin surrounding the accessory root canal. The cavity was filled and the foramen was sealed with resin containing bioactive surface pre-reacted glass (S-PRG) filler. The photopolymerized resin was then contoured and polished. In combination with subsequent supportive non-surgical endodontic treatment, a good clinical outcome with the disappearance of the sinus tract and clinical symptoms such as discomfort and pressure pain and the regeneration of the alveolar bone hanging over the cavity was obtained. In this case, the good clinical outcome may have been due to the dentin-adhesive property and durability of the pre-adhesive system and composite resin. The better biocompatibility of S-PRG fillers presumably facilitated periodontal tissue healing

    PPARγ-Induced Global H3K27 Acetylation Maintains Osteo/Cementogenic Abilities of Periodontal Ligament Fibroblasts

    No full text
    The periodontal ligament is a soft connective tissue embedded between the alveolar bone and cementum, the surface hard tissue of teeth. Periodontal ligament fibroblasts (PDLF) actively express osteo/cementogenic genes, which contribute to periodontal tissue homeostasis. However, the key factors maintaining the osteo/cementogenic abilities of PDLF remain unclear. We herein demonstrated that PPARγ was expressed by in vivo periodontal ligament tissue and its distribution pattern correlated with alkaline phosphate enzyme activity. The knockdown of PPARγ markedly reduced the osteo/cementogenic abilities of PDLF in vitro, whereas PPARγ agonists exerted the opposite effects. PPARγ was required to maintain the acetylation status of H3K9 and H3K27, active chromatin markers, and the supplementation of acetyl-CoA, a donor of histone acetylation, restored PPARγ knockdown-induced decreases in the osteo/cementogenic abilities of PDLF. An RNA-seq/ChIP-seq combined analysis identified four osteogenic transcripts, RUNX2, SULF2, RCAN2, and RGMA, in the PPARγ-dependent active chromatin region marked by H3K27ac. Furthermore, RUNX2-binding sites were selectively enriched in the PPARγ-dependent active chromatin region. Collectively, these results identified PPARγ as the key transcriptional factor maintaining the osteo/cementogenic abilities of PDLF and revealed that global H3K27ac modifications play a role in the comprehensive osteo/cementogenic transcriptional alterations mediated by PPARγ

    Public RNA-seq data-based identification and functional analyses reveal that MXRA5 retains proliferative and migratory abilities of dental pulp stem cells

    No full text
    Abstract Dental pulp stem cells (DPSC) usually remain quiescent in the dental pulp tissue; however, once the dental pulp tissue is injured, DPSCs potently proliferate and migrate into the injury microenvironment and contribute to immuno-modulation and tissue repair. However, the key molecules that physiologically support the potent proliferation and migration of DPSCs have not been revealed. In this study, we searched publicly available transcriptome raw data sets, which contain comparable (i.e., equivalently cultured) DPSC and mesenchymal stem cell data. Three data sets were extracted from the Gene Expression Omnibus database and then processed and analyzed. MXRA5 was identified as the predominant DPSC-enriched gene associated with the extracellular matrix. MXRA5 is detected in human dental pulp tissues. Loss of MXRA5 drastically decreases the proliferation and migration of DSPCs, concomitantly with reduced expression of the genes associated with the cell cycle and microtubules. In addition to the known full-length isoform of MXRA5, a novel splice variant of MXRA5 was cloned in DPSCs. Recombinant MXRA5 coded by the novel splice variant potently induced the haptotaxis migration of DPSCs, which was inhibited by microtubule inhibitors. Collectively, MXRA5 is a key extracellular matrix protein in dental pulp tissue for maintaining the proliferation and migration of DPSCs
    corecore