5,057 research outputs found

    Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure

    Full text link
    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantitative hydration free energies and structures of small molecular solutes like n-alkanes, and of hard sphere solutes whose radii range from angstroms to nanometers. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.Comment: 18 pages, 6 figure

    Superconductivity in metal rich Li-Pd-B ternary Boride

    Full text link
    8K superconductivity was observed in the metal rich Li-Pd-B ternary system. Structural, microstructural, electrical and magnetic investigations for various compositions proved that Li2Pd3B compound, which has a cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has high density, is stable in the air and has an upper critical field, Hc2(0), of 6T.Comment: 4 pages, 5 figur

    Sharp error terms for return time statistics under mixing conditions

    Get PDF
    We describe the statistics of repetition times of a string of symbols in a stochastic process. Denote by T(A) the time elapsed until the process spells the finite string A and by S(A) the number of consecutive repetitions of A. We prove that, if the length of the string grows unbondedly, (1) the distribution of T(A), when the process starts with A, is well aproximated by a certain mixture of the point measure at the origin and an exponential law, and (2) S(A) is approximately geometrically distributed. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of T(A) and S(A). To obtain (1) we assume that the process is phi-mixing while to obtain (2) we assume the convergence of certain contidional probabilities

    Site-site memory equation approach in study of density/pressure dependence of translational diffusion coefficient and rotational relaxation time of polar molecular solutions: acetonitrile in water, methanol in water, and methanol in acetonitrile

    Full text link
    We present results of theoretical study and numerical calculation of the dynamics of molecular liquids based on combination of the memory equation formalism and the reference interaction site model - RISM. Memory equations for the site-site intermediate scattering functions are studied in the mode-coupling approximation for the first order memory kernels, while equilibrium properties such as site-site static structure factors are deduced from RISM. The results include the temperature-density(pressure) dependence of translational diffusion coefficients D and orientational relaxation times t for acetonitrile in water, methanol in water and methanol in acetonitrile, all in the limit of infinite dilution. Calculations are performed over the range of temperatures and densities employing the SPC/E model for water and optimized site-site potentials for acetonitrile and methanol. The theory is able to reproduce qualitatively all main features of temperature and density dependences of D and t observed in real and computer experiments. In particular, anomalous behavior, i.e. the increase in mobility with density, is observed for D and t of methanol in water, while acetonitrile in water and methanol in acetonitrile do not show deviations from the ordinary behavior. The variety exhibited by the different solute-solvent systems in the density dependence of the mobility is interpreted in terms of the two competing origins of friction, which interplay with each other as density increases: the collisional and dielectric frictions which, respectively, increase and decrease with increasing density.Comment: 13 pages, 8 eps-figures, 3 tables, RevTeX4-forma

    Solar Neutrinos with Three Flavor Mixings

    Get PDF
    The recent 71Ga solar neutrino observation is combined with the 37Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.Comment: August 1992 (Revised) PURD-TH-92-

    Search for Heavy Leptons at Hadron Colliders

    Full text link
    Four models are considered which contain heavy leptons beyond the three families of the standard model. Two are fourth-generation extensions of the standard model in which the right-handed heavy leptons are either isosinglets or in an isodoublet; the other two are motivated by the aspon model of CP violation. In all these models, the heavy neutrino can either be heavier than, or comparable in mass to, the charged lepton leading to the possibility that the charged lepton is very long-lived. Production cross section and signatures for the heavy leptons are computed for the SSC and LHC.Comment: 17 pages(8 figures are not included),TRI-PP-92-9

    The Earth Effect in the MSW Analysis of the Solar Neutrino Experiments

    Full text link
    We consider the Earth effect in the MSW analysis of the Homestake, Kamiokande, GALLEX, and SAGE solar neutrino experiments. Using the time-averaged data and assuming two-flavor oscillations, the large-angle region of the combined fit extends to much smaller angles (to sin22θ0.1\sin^22\theta \simeq 0.1) than when the Earth effect is ignored. However, the additional constraint from the Kamiokande II day-night data excludes most of the parameter space sensitive to the Earth effect independent of astrophysical uncertainties, and leaves only a small large-angle region close to maximal mixing at 90\% C.L. The nonadiabatic solution remains unaffected by the Earth effect and is still preferred. Both theoretical and experimental uncertainties are included in the analysis.Comment: (11 pages, Revtex 3.0 (can be changed to Latex), 3 postscript figures included, UPR-0570T

    Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field

    Full text link
    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin\chi_{spin} of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that χspin\chi_{spin} increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H)\chi_{spin}(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of χspin\chi_{spin} at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.Comment: To appea

    Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales

    Full text link
    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density. It makes the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.Comment: 24 pages, 8 figure

    Standard Model Contributions to the Neutrino Index of Refraction in the Early Universe

    Full text link
    With the standard electroweak interactions, the lowest-order coherent forward scattering amplitudes of neutrinos in a CP symmetric medium (such as the early universe) are zero, and the index of refraction of a propagating neutrino can only arise from the expansion of gauge boson propagators, from radiative corrections, and from new physics interactions. Motivated by nucleosynthesis constraints on a possible sterile neutrino (suggested by the solar neutrino deficit and a possible 17 keV17\ keV neutrino), we calculate the standard model contributions to the neutrino index of refraction in the early universe, focusing on the period when the temperature was of the order of a few MeVMeV. We find sizable radiative corrections to the tree level result obtained by the expansion of the gauge boson propagator. For νe+e(eˉ)νe+e(eˉ)\nu_e+e(\bar{e})\to \nu_e+e(\bar{e}) the leading log correction is about +10%+10\%, while for νe+νe(νˉe)νe+νe(νˉe)\nu_e+\nu_e(\bar{\nu}_e)\to \nu_e+\nu_e(\bar{\nu}_e) the correction is about +20%+20\%. Depending on the family mixing (if any), effects from different family scattering can be dominated by radiative corrections. The result for ν+γν+γ\nu+\gamma\to\nu+\gamma is zero at one-loop level, even if neutrinos are massive. The cancellation of infrared divergence in a coherent process is also discussed.Comment: 46pp, 13 figures (not included), UPR-0495
    corecore