7,103 research outputs found

    Observational tests for oscillating expansion rate of the Universe

    Full text link
    We investigate the observational constraints on the oscillating scalar field model using data from type Ia supernovae, cosmic microwave background anisotropies, and baryon acoustic oscillations. According to a Fourier analysis, the galaxy number count NN from redshift zz data indicates that galaxies have preferred periodic redshift spacings. We fix the mass of the scalar field as mϕ=3.2×10−31hm_\phi=3.2\times 10^{-31}h eV{\rm eV} such that the scalar field model can account for the redshift spacings, and we constrain the other basic parameters by comparing the model with accurate observational data. We obtain the following constraints: Ωm,0=0.28±0.03\Omega_{m,0}=0.28\pm 0.03 (95% C.L.), Ωϕ,0−158\Omega_{\phi,0} -158 (95% C.L.) (in the range ξ≤0\xi \le 0). The best fit values of the energy density parameter of the scalar field and the coupling constant are Ωϕ,0=0.01\Omega_{\phi,0}= 0.01 and ξ=−25\xi= -25, respectively. The value of Ωϕ,0\Omega_{\phi,0} is close to but not equal to 00. Hence, in the scalar field model, the amplitude of the galaxy number count cannot be large. However, because the best fit values of Ωϕ,0\Omega_{\phi,0} and ξ\xi are not 00, the scalar field model has the possibility of accounting for the periodic structure in the NN--zz relation of galaxies. The variation of the effective gravitational constant in the scalar field model is not inconsistent with the bound from observation.Comment: 9 pages, 11 figures, 1 table, Accepted for publication in Physical Review

    The rapidity dependence of the proton-to-pion ratio in Au+Au and p+p collisions at sqrt(sNN) = 62.4 and 200 GeV

    Full text link
    The BRAHMS measured proton-to-pion ratios in Au+Au and p+p collisions at \rootsnn{62.4} and \rootsnn{200} are presented as a function of transverse momentum and collision centrality within the pseudo-rapidity range 0 < eta < 3.8 The results for Au+Au at sqrt(sNN) = 200 GeV are compared with predictions from models which incorporate hydro-dynamics, hadron rescattering and jet production, in the eta interval covered. In Au+Au collisions at sqrt(sNN) = 200 GeV, eta ~ 2.2, and at sqrt(sNN) = 62.4 GeV, eta = 0, the bulk medium can be characterized by the common value of \mi_B ~ 65 MeV. The p/pi ratios measured for these two selections display a striking agreement in the pT range covered (up to 2.2 GeV/c). At a collision energy of 62.4 GeV and at forward pseudo-rapidity we found a crossing point of p/pi+ ratios measured in central and semi-peripheral Au+Au and in p+p reactions. The crossing occurs in the narrow eta bin around value of 3.2, simultaneously in the whole covered pT range (0.3 GeV/c < pT < 2 GeV/c).Comment: 4 pages, 4 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee Included corrections indicated in internal review report. Minor correction to Fig.

    Can transport peak explain the low-mass enhancement of dileptons at RHIC?

    Full text link
    We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant DD and the relaxation time Ï„J\tau_{\rm J}. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.Comment: To appear in the conference proceedings for Quark Matter 2011, May 23 - May 28, Annecy, Franc

    Mechanism of phase transitions and the electronic density of states in (La,Sm)FeAsO1−x_{1-x}Fx_x from ab initio calculations

    Full text link
    The structure and electronic density of states in layered LnFeAsO1−x_{1-x}Fx_x (Ln=La,Sm; xx=0.0, 0.125, 0.25) are investigated using density functional theory. For the xx=0.0 system we predict a complex potential energy surface, formed by close-lying single-well and double-well potentials, which gives rise to the tetragonal-to-orthorhombic structural transition, appearance of the magnetic order, and an anomaly in the specific heat capacity observed experimentally at temperatures below ∼\sim140--160 K. We propose a mechanism for these transitions and suggest that these phenomena are generic to all compounds containing FeAs layers. For x>x>0.0 we demonstrate that transition temperatures to the superconducting state and their dependence on xx correlate well with the calculated magnitude of the electronic density of states at the Fermi energy.Comment: 4 pages, 3 figures, 1 tabl

    Effects of fluctuations on the initial eccentricity from the Color Glass Condensate in heavy ion collisions

    Get PDF
    We introduce a modified form of the Kharzeev-Levin-Nardi (KLN) approach for nuclear collisions. The new ansatz for the unintegrated gluon distribution function preserves factorization, and the saturation scale is bound from below by that for a single nucleon. It also reproduces the correct scaling with the number of collisions at high transverse momentum. The corresponding Monte Carlo implementation allows us to account for fluctuations of the hard sources (nucleons) in the transverse plane. We compute various definitions of the eccentricity within the new approach, which are relevant for the interpretation of the elliptic flow. Our approach predicts breaking of the scaling of the eccentricity with the Glauber eccentricity at the level of about 30%.Comment: 9 pages, 10 figures, Updated version as accepted by Phys.Rev.

    Jet quenching and direct photon production

    Full text link
    Jet quenching effect has been investigated in the direct photon production, based on a realistic data-constrained (3+1) dimensional hydrodynamic description of the expanding hot and dense matter, a reasonable treatment of the propagation of partons and their energy loss in the fluid, and a systematic study of the main sources of direct photons. Our resultant \pt spectra agree with recent PHENIX data in a broad \pt range. Parton energy loss in the plasma eventually effect significantly direct photon production from fragmentation and jet photon conversion, similar to hadron suppression in central heavy ion collisions. But this only causes about 40% decrease in the total production of direct photons, due to the mixture with other direct photon sources.Comment: 6 pages and 3 figures, To appear in the proceedings of the International Conference on Strangeness in Quark matter (SQM2008), Beijing, China, Oct 6-10, 200

    CGC, Hydrodynamics, and the Parton Energy Loss

    Full text link
    Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics with initial conditions from the Color Glass Condensate (CGC). Minijet components with parton energy loss in medium are also taken into account by using parton density obtained from hydrodynamical simulations. We found that CGC provides a good initial condition for hydrodynamics in Au+Au collisions at RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure
    • …
    corecore