174 research outputs found
Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus
Bioprinting is a new technology, which arranges cells with high spatial resolution, but its potential to create models for viral infection studies has not yet been fully realized. The present study describes the optimization of a bioink composition for extrusion printing. The bioinks were biophysically characterized by rheological and electron micrographic measurements. Hydrogels consisting of alginate, gelatin and Matrigel were used to provide a scaffold for a 3D arrangement of human alveolar A549 cells. A blend containing 20% Matrigel provided the optimal conditions for spatial distribution and viability of the printed cells. Infection of the 3D model with a seasonal influenza A strain resulted in widespread distribution of the virus and a clustered infection pattern that is also observed in the natural lung but not in two-dimensional (2D) cell culture, which demonstrates the advantage of 3D printed constructs over conventional culture conditions. The bioink supported viral replication and proinflammatory interferon release of the infected cells. We consider our strategy to be paradigmatic for the generation of humanized 3D tissue models by bioprinting to study infections and develop new antiviral strategies.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berli
Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells
BACKGROUND: Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH(2)-terminal kinase (JNK) METHODS: Human bronchial epithelial cells (BEAS-2B) or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. RESULTS: S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1). We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser(63/73)-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. CONCLUSION: S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c-Jun to the il8 promoter
Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B
<p>Abstract</p> <p>Background</p> <p>Nontypeable <it>Haemophilus influenzae </it>(NTHi) is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) via activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B in pulmonary alveolar epithelial cells.</p> <p>Methods</p> <p>Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA), and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. The roles of Toll-like receptor (TLR) 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 <it>in vitro </it>and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice <it>in vivo</it>. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors.</p> <p>Results</p> <p>NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell <it>in vitro </it>and in the lungs of mice <it>in vivo</it>. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B. Moreover, the expressions of COX-2 and PGE2 were significantly inhibited by specific inhibitors of p38 MAPK and NF-kappa B. However, NTHi-induced DNA binding activity of NF-kappa B was not affected by the inhibition of p38 MAPK.</p> <p>Conclusion</p> <p>NTHi induces COX-2 and PGE2 expression in a p38 MAPK and NF-kappa B-dependent manner through TLR2 in lung epithelial cells <it>in vitro </it>and lung tissues <it>in vivo</it>. The full understanding of the role of endogenous anti-inflammatory PGE2 and its regulation will bring new insight to the resolution of inflammation in pulmonary bacterial infections.</p
Adrenomedullin and tumour angiogenesis
The angiogenic activity of peptide adrenomedullin (AM) was first shown in 1998 . Since then, a number of reports have confirmed the ability of AM to induce the growth and migration of isolated vascular endothelial and smooth muscle cells in vitro and to promote angiogenesis in xenografted tumours in vivo. In addition, knockout murine models point to an essential role for AM in embryonic vasculogenesis and ischaemic revascularisation. AM expression is upregulated by hypoxia (a typical feature of solid tumours) and a potential role as a regulator of carcinogenesis and tumour progression has been proposed based on studies in vitro and in animal models. Nevertheless, translational research on AM, and in particular, confirmation of its importance in the vascularisation of human tumours has lagged behind. In this commentary, we review current progress and potential directions for future research into the role of AM in tumour angiogenesis
Legionella pneumophila induces human beta Defensin-3 in pulmonary cells
<p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards <it>L. pneumophila</it>.</p> <p>Methods</p> <p>We investigated the effects of <it>L. pneumophila </it>and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis.</p> <p>Results</p> <p><it>L. pneumophila </it>induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun) but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on <it>L. pneumophila </it>replication.</p> <p>Conclusions</p> <p>Taken together, human pulmonary cells produce hBD-3 upon <it>L. pneumophila </it>infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.</p
State-of-the-art analytical methods of viral infections in human lung organoids
Human-based organ models can provide strong predictive value to investigate the tropism, virulence, and replication kinetics of viral pathogens. Currently, such models have received widespread attention in the study of SARS-CoV-2 causing the COVID-19 pandemic. Applicable to a large set of organoid models and viruses, we provide a step-by-step work instruction for the infection of human alveolar-like organoids with SARS-CoV-2 in this protocol collection. We also prepared a detailed description on state-of-the-art methodologies to assess the infection impact and the analysis of relevant host factors in organoids. This protocol collection consists of five different sets of protocols. Set 1 describes the protein extraction from human alveolar-like organoids and the determination of protein expression of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and FURIN as exemplary host factors of SARS-CoV-2. Set 2 provides detailed guidance on the extraction of RNA from human alveolar-like organoids and the subsequent qPCR to quantify the expression level of ACE2, TMPRSS2, and FURIN as host factors of SARS-CoV-2 on the mRNA level. Protocol set 3 contains an in-depth explanation on how to infect human alveolar-like organoids with SARS-CoV-2 and how to quantify the viral replication by plaque assay and viral E gene-based RT-qPCR. Set 4 provides a step-by-step protocol for the isolation of single cells from infected human alveolar-like organoids for further processing in single-cell RNA sequencing or flow cytometry. Set 5 presents a detailed protocol on how to perform the fixation of human alveolar-like organoids and guides through all steps of immunohistochemistry and in situ hybridization to visualize SARS-CoV-2 and its host factors. The infection and all subsequent analytical methods have been successfully validated by biological replications with human alveolar-like organoids based on material from different donors
Plasma mediators in patients with severe COVID-19 cause lung endothelial barrier failure
Plasma of COVID-19 patients induces pulmonary microvascular barrier failure which increases with disease severity. Here, we report a versatile high-throughput screening platform to test for involved plasma mediators and the therapeutic potential of barrier stabilising compounds
Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells
<p>Abstract</p> <p>Background</p> <p><it>Cryptococcus neoformans </it>(<it>C. neoformans</it>) is a globally distributed fungal pathogen with the potential to cause serious disease, particularly among immune compromised hosts. Exposure to this organism is believed to occur by inhalation and may result in pneumonia and/or disseminated infection of the brain as well as other organs. Little is known about the role of airway epithelial cells in cryptococcal recognition or their ability to induce an inflammatory response.</p> <p>Methods</p> <p>Immortalized BEAS-2B bronchial epithelial cells and primary normal human bronchial epithelium (NHBE) were stimulated <it>in vitro </it>with encapsulated or acapsular <it>C. neoformans </it>cultivated at room temperature or 37°C. Activation of bronchial epithelial cells was characterized by analysis of inflammatory cytokine and chemokine expression, transcription factor activation, fungal-host cell association, and host cell damage.</p> <p>Results</p> <p>Viable <it>C. neoformans </it>is a strong activator of BEAS-2B cells, resulting in the production of the neutrophil chemokine Interleukin (IL)-8 in a time- and dose-dependent manner. IL-8 production was observed only in response to acapsular <it>C. neoformans </it>that was grown at 37°C. <it>C. neoformans </it>was also able to induce the expression of the chemokine CXCL1 and the transcription factor CAAT/enhancer-binding protein beta (CEBP/β) in BEAS-2B cells. NHBE was highly responsive to stimulation with <it>C. neoformans</it>; in addition to transcriptional up regulation of CXCL1, these primary cells exhibited the greatest IL-8 secretion and cell damage in response to stimulation with an acapsular strain of <it>C. neoformans</it>.</p> <p>Conclusion</p> <p>This study demonstrates that human bronchial epithelial cells mediate an acute inflammatory response to <it>C. neoformans </it>and are susceptible to damage by this fungal pathogen. The presence of capsular polysaccharide and <it>in vitro </it>fungal culture conditions modulate the host inflammatory response to <it>C. neoformans</it>. Human bronchial epithelial cells are likely to contribute to the initial stages of pulmonary host defense <it>in vivo</it>.</p
A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis
The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane–associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium
- …