146 research outputs found
Topological signatures in CMB temperature anisotropy maps
We propose an alternative formalism to simulate CMB temperature maps in
CDM universes with nontrivial spatial topologies. This formalism
avoids the need to explicitly compute the eigenmodes of the Laplacian operator
in the spatial sections. Instead, the covariance matrix of the coefficients of
the spherical harmonic decomposition of the temperature anisotropies is
expressed in terms of the elements of the covering group of the space. We
obtain a decomposition of the correlation matrix that isolates the topological
contribution to the CMB temperature anisotropies out of the simply connected
contribution. A further decomposition of the topological signature of the
correlation matrix for an arbitrary topology allows us to compute it in terms
of correlation matrices corresponding to simpler topologies, for which closed
quadrature formulae might be derived. We also use this decomposition to show
that CMB temperature maps of (not too large) multiply connected universes must
show ``patterns of alignment'', and propose a method to look for these
patterns, thus opening the door to the development of new methods for detecting
the topology of our Universe even when the injectivity radius of space is
slightly larger than the radius of the last scattering surface. We illustrate
all these features with the simplest examples, those of flat homogeneous
manifolds, i.e., tori, with special attention given to the cylinder, i.e.,
topology.Comment: 25 pages, 7 eps figures, revtex4, submitted to PR
On general features of warm dark matter with reduced relativistic gas
Reduced Relativistic Gas (RRG) is a useful approach to describe the warm dark
matter (WDM) or the warmness of baryonic matter in the approximation when the
interaction between the particles is irrelevant. The use of Maxwell
distribution leads to the complicated equation of state of the J\"{u}ttner
model of relativistic ideal gas. The RRG enables one to reproduce the same
physical situation but in a much simpler form. For this reason RRG can be a
useful tool for the theories with some sort of a "new Physics". On the other
hand, even without the qualitatively new physical implementations, the RRG can
be useful to describe the general features of WDM in a model-independent way.
In this sense one can see, in particular, to which extent the cosmological
manifestations of WDM may be dependent on its Particle Physics background. In
the present work RRG is used as a complementary approach to derive the main
observational exponents for the WDM in a model-independent way. The only
assumption concerns a non-negligible velocity for dark matter particles
which is parameterized by the warmness parameter . The relatively high
values of ( ) erase the radiation (photons and
neutrinos) dominated epoch and cause an early warm matter domination after
inflation. Furthermore, RRG approach enables one to quantify the lack of power
in linear matter spectrum at small scales and in particular, reproduces the
relative transfer function commonly used in context of WDM with accuracy of
. A warmness with (equivalent to ) does not alter significantly the CMB power spectrum and is in
agreement with the background observational tests.Comment: 15 pages, 8 figures. Essential improvements in style and presentatio
Enhanced Optical Dichroism of Graphene Nanoribbons
The optical conductivity of graphene nanoribbons is analytical and exactly
derived. It is shown that the absence of translation invariance along the
transverse direction allows considerable intra-band absorption in a narrow
frequency window that varies with the ribbon width, and lies in the THz range
domain for ribbons 10-100nm wide. In this spectral region the absorption
anisotropy can be as high as two orders of magnitude, which renders the medium
strongly dichroic, and allows for a very high degree of polarization (up to
~85) with just a single layer of graphene. The effect is resilient to level
broadening of the ribbon spectrum potentially induced by disorder. Using a
cavity for impedance enhancement, or a stack of few layer nanoribbons, these
values can reach almost 100%. This opens a potential prospect of employing
graphene ribbon structures as efficient polarizers in the far IR and THz
frequencies.Comment: Revised version. 10 pages, 7 figure
Parcels and particles: Markov blankets in the brain
At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions—and analyses—of distributed brain responses: namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks
Recommended from our members
Pattern breaking: a complex systems approach to psychedelic medicine
Recent research has demonstrated the potential of psychedelic therapy for mental health care. However, the psychological experience underlying its therapeutic effects remains poorly understood. This paper proposes a framework that suggests psychedelics act as destabilizers, both psychologically and neurophysiologically. Drawing on the ‘entropic brain’ hypothesis and the ‘RElaxed Beliefs Under pSychedelics’ model, this paper focuses on the richness of psychological experience. Through a complex systems theory perspective, we suggest that psychedelics destabilize fixed points or attractors, breaking reinforced patterns of thinking and behaving. Our approach explains how psychedelic-induced increases in brain entropy destabilize neurophysiological set points and lead to new conceptualizations of psychedelic psychotherapy. These insights have important implications for risk mitigation and treatment optimization in psychedelic medicine, both during the peak psychedelic experience and during the subacute period of potential recovery
Optical Self Energy in Graphene due to Correlations
In highly correlated systems one can define an optical self energy in analogy
to its quasiparticle (QP) self energy counterpart. This quantity provides
useful information on the nature of the excitations involved in inelastic
scattering processes. Here we calculate the self energy of the intraband
optical transitions in graphene originating in the electron-electron
interaction (EEI) as well as electron-phonon interaction (EPI). Although optics
involves an average over all momenta () of the charge carriers, the
structure in the optical self energy is nevertheless found to mirror mainly
that of the corresponding quasiparticles for equal to or near the Fermi
momentum . Consequently plasmaronic structures which are associated with
momenta near the Dirac point at are not important in the intraband
optical response. While the structure of the electron-phonon interaction (EPI)
reflects the sharp peaks of the phonon density of states, the excitation
spectrum associated with the electron-electron interaction is in comparison
structureless and flat and extends over an energy range which scales linearly
with the value of the chemical potential. Modulations seen on the edge of the
interband optical conductivity as it rises towards its universal background
value are traced to structure in the quasiparticle self energies around
of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure
Effects of differential mobility on biased diffusion of two species
Using simulations and a simple mean-field theory, we investigate jamming
transitions in a two-species lattice gas under non-equilibrium steady-state
conditions. The two types of particles diffuse with different mobilities on a
square lattice, subject to an excluded volume constraint and biased in opposite
directions. Varying filling fraction, differential mobility, and drive, we map
out the phase diagram, identifying first order and continuous transitions
between a free-flowing disordered and a spatially inhomogeneous jammed phase.
Ordered structures are observed to drift, with a characteristic velocity, in
the direction of the more mobile species.Comment: 15 pages, 4 figure
Guidelines for Maritime Spatial Planning in the European Macaronesia: Stakeholder-oriented
Macaronesian Maritime Spatial Planning - MarSPMAMAR-S
Many-body Landau-Zener dynamics in coupled 1D Bose liquids
The Landau-Zener model of a quantum mechanical two-level system driven with a
linearly time dependent detuning has served over decades as a textbook paradigm
of quantum dynamics. In their seminal work [L. D. Landau, Physik. Z. Sowjet. 2,
46 (1932); C. Zener, Proc. Royal Soc. London 137, 696 (1932)], Landau and Zener
derived a non-perturbative prediction for the transition probability between
two states, which often serves as a reference point for the analysis of more
complex systems. A particularly intriguing question is whether that framework
can be extended to describe many-body quantum dynamics. Here we report an
experimental and theoretical study of a system of ultracold atoms, offering a
direct many-body generalization of the Landau-Zener problem. In a system of
pairwise tunnel-coupled 1D Bose liquids we show how tuning the correlations of
the 1D gases, the tunnel coupling between the tubes and the inter-tube
interactions strongly modify the original Landau-Zener picture. The results are
explained using a mean-field description of the inter-tube condensate
wave-function, coupled to the low-energy phonons of the 1D Bose liquid.Comment: 13 pages, 10 figures
- …