40 research outputs found

    Magnetic field control of the spin Seebeck effect

    Full text link
    The origin of the suppression of the longitudinal spin Seebeck effect by applied magnetic fields is studied. We perform numerical simulations of the stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin model and calculate the magnon accumulation in linear temperature gradients for different strengths of applied magnetic fields and different length scales of the temperature gradient. We observe a decrease of the magnon accumulation with increasing magnetic field and we reveal that the origin of this effect is a field dependent change of the frequency distribution of the propagating magnons. With increasing field the magnonic spin currents are reduced due to a suppression of parts of the frequency spectrum. By comparison with measurements of the magnetic field dependent longitudinal spin Seebeck effect in YIG thin films with various thicknesses, we find that our model describes the experimental data very well, demonstrating the importance of this effect for experimental systems

    Modeling ultrafast all-optical switching in synthetic ferrimagnets

    Get PDF
    Based on numerical simulations, we demonstrate thermally induced magnetic switching in synthetic ferrimagnets composed of multilayers of rare-earth and transition metals. Our findings show that deterministic magnetization reversal occurs above a certain threshold temperature if the ratio of transition metal atoms to rare-earth atoms is sufficiently large. Surprisingly, the total thickness of the multilayer system has little effect on the occurence of switching. We further provide a simple argument to explain the temperature dependence of the reversal process.Comment: 6 pages, 5 figure

    Roles of heating and helicity in ultrafast all-optical magnetization switching in TbFeCo

    Get PDF
    Using the time-resolved magneto-optical Kerr effect method, helicity dependent all-optical magne- tization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. Our results reveal the individual roles of the thermal and nonthermal effects after a single circularly polarized laser pulse. The evolution of this ultrafast switching occurs over different time scales, and a defined magnetization reversal time of 460 fs is shown—the fastest ever observed. Micromagnetic simulations based on a single macro-spin model, taking into account both heating and the inverse Faraday effect, are performed which reproduce HDAOS demonstrating a linear path for magnetization reversal

    Length Scale of the Spin Seebeck Effect

    Get PDF
    We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299)National Science Foundation (U.S.) (Award ECCS1231392

    Domain wall motion by the magnonic spin Seebeck effect

    No full text
    The recently discovered spin Seebeck effect refers to a spin current induced by a temperature gradient in a ferromagnetic material. It combines spin degrees of freedom with caloric properties, opening the door for the invention of new, spin caloritronic devices. Using spin model simulations as well as an innovative, multiscale micromagnetic framework we show that magnonic spin currents caused by temperature gradients lead to spin transfer torque effects, which can drag a domain wall in a ferromagnetic nanostructure towards the hotter part of the wire. This effect opens new perspectives for the control and manipulation of domain structures

    Magnetic relaxation in a classical spin chain

    No full text
    With decreasing particle size, different mechanisms dominate the thermally activated magnetization reversal in ferromagnetic particles. We investigate some of these mechanisms for the case of a classical Heisenberg spin chain driven by an external magnetic field. For sufficiently small system size the magnetic moments rotate coherently. With increasing size a crossover to a reversal due to soliton-antisoliton nucleation sets in. For even larger systems many of these soliton-antisoliton pairs nucleate at the same time. These effects give rise to a complex size dependence of the energy barriers and characteristic time scales of the relaxation. We study these quantities using Monte Carlo simulations as well as a direct integration of the Landau-Lifshitz-Gilbert equation of motion with Langevin dynamics and we compare our results with asymptotic solutions for the escape rate following from the Fokker-Planck equation. Also, we investigate the crossover from coherent rotation to soliton-antisoliton nucleation and multidroplet nucleation, especially its dependence on the system size, the external field, and the anisotropy of the system

    Monte Carlo simulation of magnetization switching in a Heisenberg model for small ferromagnetic particles

    No full text
    Using Monte Carlo methods we investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy one expects that the spins rotate coherently while for sufficiently large anisotropy the reversal should be due to nucleation. The latter case has been investigated extensively by Monte Carlo simulation of corresponding Ising models. In order to study the crossover from coherent rotation to nucleation we use a specially adjusted update algorithm for the Monte Carlo simulation of a classical three-dimensional Heisenberg model with a finite uniaxial anisotropy. This special algorithm which uses a combined sampling can simulate different reversal mechanisms efficiently. It will be described in detail and its efficiency and physical validity will be discussed by a comparison with other common update-algorithms
    corecore