62 research outputs found

    A Fully Integrated Continuous-Flow System for Asymmetric Catalysis: Enantioselective Hydrogenation with Supported Ionic Liquid Phase Catalysts Using Supercritical CO<sub>2</sub> as the Mobile Phase

    No full text
    A continuous-flow process based on a chiral transition-metal complex in a supported ionic liquid phase (SILP) with supercritical carbon dioxide (scCO2) as the mobile phase is presented for asymmetric catalytic transformations of low-volatility organic substrates at mild reaction temperatures. Enantioselectivity of >99 % ee and quantitative conversion were achieved in the hydrogenation of dimethylitaconate for up to 30 h, reaching turnover numbers beyond 100 000 for the chiral QUINAPHOS–rhodium complex. By using an automated high-pressure continuous-flow setup, the product was isolated in analytically pure form without the use of any organic co-solvent and with no detectable catalyst leaching. Phase-behaviour studies and high-pressure NMR spectroscopy assisted the localisation of optimum process parameters by quantification of substrate partitioning between the IL and scCO2. Fundamental insight into the molecular interactions of the metal complex, ionic liquid and the surface of the support in working SILP catalyst materials was gained by means of systematic variations, spectroscopic studies and labelling experiments. In concert, the obtained results provided a rationale for avoiding progressive long-term deactivation. The optimised system reached stable selectivities and productivities that correspond to 0.7 kg L−1 h−1 space–time yield and at least 100 kg product per gram of rhodium, thus making such processes attractive for larger-scale application

    Разработка мероприятий по оздоровлению финансового состояния ООО «Металлист»

    Get PDF
    Цель бакалаврской работы – проведение анализа финансово-экономических показателей деятельности предприятия и разработка рекомендаций по улучшению его финансового состояния.The purpose of the bachelor's work is to analyze the financial and economic performance of the enterprise and develop recommendations to improve its financial condition

    Catalyst activation by loss of cyclopentadienyl ligands in hydrogen transfer catalysis with Cp*IrIII complexes

    Get PDF
    The activity of the two related complexes [Cp*Ir(IMe) 2X]BF4 (X = Cl (1), H (2)) in transfer hydrogenation from isopropyl alcohol to acetophenone was investigated. The results suggest that the commonly accepted monohydride mechanism for transfer hydrogenation mediated by cyclopentadienyl iridium species does not apply to chloride 1. We have found evidence that, although the two monodentate NHC ligands are retained in the coordination sphere, the Cp* ligand is completely released under mild conditions in a precatalytic activation step. Synthesis of modified versions of the initial precatalyst 1 with different cyclopentadienyl and NHC ligands demonstrated that increasing the steric pressure around the iridium center facilitates precatalyst activation and thus enhances the catalytic performance. Study of five new iridium(III) complexes bearing mono- or diphosphines helped us monitor Cp* ligand loss under mild conditions. An unusual P-C bond cleavage was also noted in a 1,2-bis(dimethylphosphino)methane (dmpm) ligand. On the basis of these findings, a novel catalyst activation mechanism is proposed for [(η5-C5R5)Ir] transfer hydrogenation based on the lability of the cyclopentadienyl ligand. © 2014 American Chemical Society

    Probing the viability of oxo-coupling pathways in iridium-catalyzed oxygen evolution

    Get PDF
    [Image: see text] A series of Cp*Ir(III) dimers have been synthesized to elucidate the mechanistic viability of radical oxo-coupling pathways in iridium-catalyzed O(2) evolution. The oxidative stability of the precursors toward nanoparticle formation and their oxygen evolution activity have been investigated and compared to suitable monomeric analogues. We found that precursors bearing monodentate NHC ligands degraded to form nanoparticles (NPs), and accordingly their O(2) evolution rates were not significantly influenced by their nuclearity or distance between the two metals in the dimeric precursors. A doubly chelating bis-pyridine–pyrazolide ligand provided an oxidation-resistant ligand framework that allowed a more meaningful comparison of catalytic performance of dimers with their corresponding monomers. With sodium periodate (NaIO(4)) as the oxidant, the dimers provided significantly lower O(2) evolution rates per [Ir] than the monomer, suggesting a negative interaction instead of cooperativity in the catalytic cycle. Electrochemical analysis of the dimers further substantiates the notion that no radical oxyl-coupling pathways are accessible. We thus conclude that the alternative path, nucleophilic attack of water on high-valent Ir-oxo species, may be the preferred mechanistic pathway of water oxidation with these catalysts, and bimolecular oxo-coupling is not a valid mechanistic alternative as in the related ruthenium chemistry, at least in the present system

    Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

    Get PDF
    Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation

    Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes

    Full text link

    Hydrogen-transfer catalysis with Cp*Ir<sup>III</sup> complexes:The influence of the ancillary ligands

    Get PDF
    Fourteen Cp*IrIII complexes, bearing various combinations of N- and C-spectator ligands, are assayed in hydrogen-transfer catalysis from isopropyl alcohol to acetophenone under various conditions to investigate ligand effects in this widely used reaction. The new cationic complexes bearing monodentate pyridine and N-heterocyclic carbene (NHC) ligands were characterized crystallographically and by variable-temperature nuclear magnetic resonance (VT-NMR). Control experiments and mercury poisoning tests showed that iridium(0) nanoparticles, although active in the reaction, are not responsible for the high activity observed for the most active precatalyst [Cp*Ir(IMe) 2Cl]BF4 (6). For efficient catalysis, it was found necessary to have both NHCs in monodentate form; tying them together in a bis-NHC chelate ligand gave greatly reduced activity. The kinetics of the base-assisted reaction showed induction periods as well as deactivation processes, and H/D scrambling experiments cast some doubt on the classical monohydride mechanism. © 2013 American Chemical Society

    Continuous flow organometallic catalysis: new wind in old sails

    No full text
    Organometallic catalysis is a powerful tool for chemical synthesis, and the field still evolves at a high pace continuously improving efficiencies and opening up new possibilities. However, despite increasing use in specialty and fine chemical production issues of catalyst recovery still hamper broader application and prevent tapping the full potential of this technology on industrial scale. Even though scientists have tackled this problem for decades practicable methods remained scarce. In this contribution we analyse the major challenges of performing organometallic catalysis in continuous flow from a conceptual point of view, and exemplify for recently developed concepts based on near- and supercritical fluids how the integration of molecular and engineering principles can offer new solutions to this persistent problem
    corecore