55 research outputs found

    Millennial-scale climate cycles in Permian-Carboniferous rhythmites: Permanent feature throughout geologic time?

    Get PDF
    Two late Paleozoic glacial rhythmite successions from the Itarare Group (Parana Basin, Brazil) were examined for paleoclimate variations. Paleomagnetic (characteristic remanent magnetization, ChRM) and magnetic susceptibility (K(z)) measurements taken from the rhythmites are interpreted as paleoclimatic proxies. Ratios of low-frequency components in the K(z) variations suggest Milankovitch periodicities; this leads to recognition of other, millennial-scale variations reminiscent of abrupt climate changes during late Quaternary time, and are suggestive of Bond cycles and the 2.4 k.y. solar cycle. We infer from these patterns that millennial-scale climate change is not restricted to the Quaternary Period, and that millennial forcing mechanisms may have been prevalent throughout geologic time.Brazilian agency FAPESP [02/06480-0]Brazilian agency CAPES [2603-07-1]Brazilian agency FAPERJ [E-26/102.033/2009

    Заява Спілки Археологів України щодо проекту Закону України “Про відродження унікального Символу православ’я — церкви Богородиці (Десятинної) в місті Києві” (№ 9196)

    Get PDF
    The Milankovitch theory of climate change is widely accepted, but the registration of the climate changes in the stratigraphic record and their use in building high-resolution astronomically tuned timescales has been disputed due to the complex and fragmentary nature of the stratigraphic record. However, results of time series analysis and consistency with independent magnetobiostratigraphic and/or radio-isotopic age models show that Milankovitch cycles are recorded not only in deep marine and lacustrine successions, but also in ice cores and speleothems, and in eolian and fluvial successions. Integrated stratigraphic studies further provide evidence for continuous sedimentation at Milankovitch time scales (10^4 years up to 10^6 years). This combined approach also shows that strict application of statistical confidence limits in spectral analysis to verify astronomical forcing in climate proxy records is not fully justified and may lead to false negatives. This is in contrast to recent claims that failure to apply strict statistical standards can lead to false positives in the search for periodic signals. Finally, and contrary to the argument that changes in insolation are too small to effect significant climate change, seasonal insolation variations resulting from orbital extremes can be significant (20% and more) and, as shown by climate modelling, generate large climate changes that can be expected to leave a marked imprint in the stratigraphic record. The tuning of long and continuous cyclic successions now underlies the standard geological time scale for much of the Cenozoic and also for extended intervals of the Mesozoic. Such successions have to be taken into account to fully comprehend the (cyclic) nature of the stratigraphic record

    Spectral analysis and modeling of microcyclostratigraphy in late Paleozoic glaciogenic rhythmites, Parana Basin, Brazil

    No full text
    We investigate the depositional time scale of lithological couplets (fine sandstone/siltstone-siltstone/mudstone) from two distinctive outcrops of Permo-Carboniferous glacial rhythmites in the Itarare Group (Parana Basin, Brazil). Resolving the fundamental issue of time scale for these rhythmites is important in light of recent evidence for paleosecular variation measured in these sequences. Spectral analysis and tuning of high-resolution gray scale scans of sediment core microstratigraphy, which comprises pervasive laminations, reveal a comparable spectral content at both localities, with a frequency suite interpreted as that of short-term climate variability of Recent and modern times. This evidence for decadal- to centennial-scale deposition of these lithological couplets is discussed in light of the `varvic` character, i.e., annual time scale that was previously assumed for the rhythmites.Brazilian agency FAPESP[02/06480-0]Brazilian agency CAPES[2603-07-1

    Astronomical metronome of geological consequence

    No full text
    corecore