49 research outputs found
Recommended from our members
Dielectric function decomposition by dipole interaction distribution: Application to triclinic K2Cr2O7
Here we present a general approach for the description for the frequency dependent dielectric tensor coefficients for optically anisotropic materials. Based on symmetry arguments we show that the components of the dielectric tensor are in general not independent of each other. For each excitation there exists an eigensystem, where its contribution to the dielectric tensor can be described by a diagonal susceptibility tensor. From the orientation of the eigensystem and the relative magnitude of the tensor elements, the dipole interaction distribution in real space can be deduced. In the limiting cases, the oriented dipole approach as well as the tensor of isotropic and uniaxial materials are obtained. The application of this model is demonstrated exemplarily on triclinic K2Cr2O7 and the orientation and directional distribution of the corresponding dipole moments in real space are determined. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
Refraction and rightness in photonic crystals
We present a study on relation between the refraction and rightness effects
in photonic crystals applied on a 2D square lattice photonic crystal. The plane
wave (the band and equifrequency contour analyses) and FDTD calculations for
both TM and TE modes revealed all possible refraction and rightness cases in
photonic crystal structures in the first three bands. In particular, we show
for the first time, a possibility of the left-handed positive refraction. This
means that left-handedness does not necessarily imply negative refraction in
photonic crystals.Comment: 10 pages, 13 figures, pd
(Photo)physical properties of new molecular glasses end-capped with thiophene rings composed of diimide and imine units
New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5- aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5- thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%
The WASCAL hydrometeorological observatory in the Sudan Savanna of Burkina Faso and Ghana
Watersheds with rich hydrometeorological equipment are still very limited in West Africa but are essential for an improved analysis of environmental changes and their impacts in this region. This study gives an overview of a novel hydrometeorological observatory that was established for two mesoscale watersheds in the Sudan Savanna of Southern Burkina Faso and Northern Ghana as part of the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) program. The study area is characterized by severe land cover changes due to a strongly increasing demand of agricultural land. The observatory is designed for long-term measurements of >30 hydrometeorological variables in subhourly resolution and further variables such as CO2. This information is complemented by long-term daily measurements from national meteorological and hydrological networks, among several other datasets recently established for this region. A unique component of the observatory is a micrometeorological field experiment using eddy covariance stations implemented at three contrasting sites (near-natural, cropland, and degraded grassland) to assess the impact of land cover changes on water, energy, and CO2 fluxes. The datasets of the observatory are needed by many modeling and field studies conducted in this region and are made available via the WASCAL database. Moreover, the observatory forms an excellent platform for future investigations and can be used as observational foundation for environmental observatories for an improved assessment of environmental changes and their socioeconomic impacts for the savanna regions of West Africa
Optical Properties of the (3,12,12) Hexagonal Archimedean Photonic Crystal
We present a theoretical research of the optical properties of the (3,12,12) hexagonal 2D Archimedean photonic crystals. The structures are made of GaAs dielectric rods in air. Our research is mainly focused on analyzing symmetry properties of the modes and the appearance of the uncoupled modes which strongly affects the propagation of the wave and the optical performances of the material