4,228 research outputs found

    Remote sensing of directional wave spectra using the surface contour radar

    Get PDF
    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction

    The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure

    Full text link
    The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with highly ordered polycrystalline films and a coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4 and 15.4 A.The dependence of the c-axis correlation length and the phase fraction on the film thickness and printing temperature were measured. A transition from the 15.4 A phase towards 14.4 A phase was also observed with increasing film thickness. An increase in the c-axis correlation length of approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si substrates. The transfer printing method is shown to be an attractive for the fabrication of pentacene thin-film transistors on flexible substrates partly because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure

    The rhesus measurement system: A new instrument for space research

    Get PDF
    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project

    Biogeochemical factors which regulate the formation and fate of sulfide in wetlands

    Get PDF
    Coastal wetland areas occupy a small percentage of the terrestrial environment yet are extremely productive regions which support rapid rates of belowground bacterial activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur, carbon, and nitrogen. These gases are important as tracers of man's activities, and they influence atmospheric chemistry. The interactions among wetland biogeochemical processes regulate the anaerobic production of reduced gases and influence the fate of these volatiles. Therefore, spatial and temporal variations in hydrology, salinity, temperature and specification, and growth of vegetation affect the type and magnitude of gas emissions thus hindering predictive estimates of gas flux. Our research is divided into two major components, the first is the biogeochemical characterization of a selected tidal wetland area in terms of factors likely to regulate sulfide flux; the second is a direct measurement of gaseous sulfur flux as related to changes in these biogeochemical conditions. Presently, we are near completion of phase one

    A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146

    Get PDF
    We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_{IR}=4e11 L_sun) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Z3146 (z=0.29). The spectrum shows strong aromatic emission features, indicating that the dominant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H2 gas mass (~1e10 M_sun) are 6 times larger than those of NGC 6240, the most H2-luminous galaxy at z <~ 0.1. Together with the large amount of cold H2 detected previously (~1e11 M_sun), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core.Comment: 13 pages, 3 figures, 1 table; Accepted for publication in ApJ

    The development of ocean test beds for ocean technology adaptation and integration into the emerging U.S. offshore wind energy industry

    Get PDF
    The landscape of applied ocean technology is rapidly changing with forces of innovation emerging from basic ocean science research methodologies as well as onshore high tech sectors. There is a critical need for ocean-related industries to continue to modernize via the adoption of state-of-the-art practices to advance rapidly changing industry objectives, maintain competitiveness, and be careful stewards of the ocean as a common resource. These objectives are of national importance for the dynamic ocean energy sector, and a mechanism by which new and promising technologies can be validated and adopted in an open and benchmarked process is needed. POWER-US seeks to develop Ocean Test Beds as research and development infrastructure capable of driving innovative observations, modeling, and monitoring of the physical, biological, and use characteristics present in offshore wind energy installation areas.AK acknowledges internal support from the Woods Hole Oceanographic Institution via the Houghton Foundation Award

    Optimization Of Fuzzy Evapotranspiration Model Through Neural Training With Input–Output Examples

    Get PDF
    In a previous study, we demonstrated that fuzzy evapotranspiration (ET) models can achieve accurate estimation of daily ET comparable to the FAO Penman–Monteith equation, and showed the advantages of the fuzzy approach over other methods. The estimation accuracy of the fuzzy models, however, depended on the shape of the membership functions and the control rules built by trial–and–error methods. This paper shows how the trial and error drawback is eliminated with the application of a fuzzy–neural system, which combines the advantages of fuzzy logic (FL) and artificial neural networks (ANN). The strategy consisted of fusing the FL and ANN on a conceptual and structural basis. The neural component provided supervised learning capabilities for optimizing the membership functions and extracting fuzzy rules from a set of input–output examples selected to cover the data hyperspace of the sites evaluated. The model input parameters were solar irradiance, relative humidity, wind speed, and air temperature difference. The optimized model was applied to estimate reference ET using independent climatic data from the sites, and the estimates were compared with direct ET measurements from grass–covered lysimeters and estimations with the FAO Penman–Monteith equation. The model–estimated ET vs. lysimeter–measured ET gave a coefficient of determination (r2) value of 0.88 and a standard error of the estimate (Syx) of 0.48 mm d–1. For the same set of independent data, the FAO Penman–Monteith–estimated ET vs. lysimeter–measured ET gave an r2 value of 0.85 and an Syx value of 0.56 mm d–1. These results show that the optimized fuzzy–neural–model is reasonably accurate, and is comparable to the FAO Penman–Monteith equation. This approach can provide an easy and efficient means of tuning fuzzy ET models

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR

    Investigation Of A Fuzzy-Neural Network Application In Classification Of Soils Using Ground-Penetrating Radar Imagery

    Get PDF
    Errors associated with visual inspection and interpretations of radargrams often inhibit the intensive surveying of widespread areas using ground-penetrating radar (GPR). To automate the interpretive process, this article presents an application of a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification of soil profiles using GPR imagery. The classifier clusters and classifies soil profile strips along a traverse based on common pattern similarities that can relate to physical features of the soil (e.g., number of horizons; depth, texture, and structure of the horizons; and relative arrangement of the horizons, etc.). This article illustrates this classification procedure by its application on GPR data, both simulated and actual. Results show that the procedure is able to classify the profile into zones that corresponded with the classifications obtained by visual inspection and interpretation of radar grams. Application of F-NN to a study site in southwest Tennessee gave soil groupings that are in close correspondence with the groupings obtained in a previous study, which used the traditional methods of complete soil morphological, chemical, and physical characterization. At a crossover value of 3.0, the F-NN soil grouping boundary locations fall within a range of ±2.7 m from the soil groupings determined by the traditional methods. These results indicate that F-NN can supply accurate real-time soil profile clustering and classification during field surveys
    • …
    corecore