125 research outputs found

    Li and U Isotopes as a Potential Tool for Monitoring Active Layer Deepening in Permafrost Dominated Catchments

    Get PDF
    Permafrost in the Arctic is decreasing in extent and the depth of the seasonally thawed layer, the active layer, is increasing. Increased exposure to water is increasing fluxes of organic and inorganic solutes with potential impacts for the global carbon cycle and downstream ecosystems. Understanding the relationship between solute release and active layer depth will be critical for modeling environmental impact, especially in inaccessible regions where there is a lack of data. In this study, we focus on the potential for the isotopes of lithium (Li) and uranium (U) to track active layer extent in two permafrost-dominated catchments in Svalbard: one glaciated and one unglaciated. These isotope systems can be measured to a much higher precision than concentration measurements and act as sensitive tracers of environmental change. The extent of Li isotope fractionation provides information on the balance between dissolution of primary phases and formation of secondary phases, such as clay minerals and oxides. The U activity ratio provides information on water-rock interaction times and physical properties. We observe contrasting behavior between the two catchments. The highest U activity ratios and Li isotope values (those most distinct from bedrock) are observed in summer in the unglaciated catchment, when the active layer depth is expected to be at its maximum extent, whereas negligible seasonal variation and the lowest values are observed in the glaciated catchment. We therefore propose that the extent of solute acquisition is directly linked to the active layer depth, which is restricted in the glaciated catchment due to a layer of “dead ice” underneath the glacial outwash plain, and could therefore provide a valuable tool to assess changes in active layer depth at catchment scales.This project was funded by a Swiss National Science Foundation fellowship for prospective researchers (PBEZP2-137335), a Marie Curie Intra-European Fellowship (PIEF-GA-2012-331501), and NERC Standard Grant NE/M001865/1. Fieldwork was supported by an Arctic Field Grant (219165/E10, The Research Council of Norway)

    Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    Get PDF
    Abstract. The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (εNd = −20.6 to −13.4; 87Sr ∕ 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr ∕ 86Sr and low εNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr ∕ 86Sr and high εNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed end-members through time.</jats:p

    Mg and Li Stable Isotope Ratios of Rocks, Minerals, and Water in an Outlet Glacier of the Greenland Ice Sheet

    Get PDF
    Magnesium and lithium stable isotope ratios (δ26Mg and δ7Li) have shown promise as tools to elucidate biogeochemical processes both at catchment scales and in deciphering global climate processes. Nevertheless, the controls on riverine Mg and Li isotope ratios are often difficult to determine as a myriad of factors can cause fractionation from bulk rock values such as secondary mineral formation and preferential weathering of isotopically distinct mineral phases. Quantifying the relative contribution from carbonate and silicate minerals to the dissolved load of glacierized catchments is particularly crucial for determining the role of chemical weathering in modulating the carbon cycle over glacial-interglacial periods. In this study we report Mg and Li isotope data for water, river sediment, rock, and mineral separates from the Leverett Glacier catchment, West Greenland. We assess whether the silicate mineral contributions to the dissolved load, previously determined using radiogenic Sr, Ca, Nd, and Hf isotopes, are consistent with dissolved Mg and Li isotope data, or whether a carbonate contribution is required as inferred previously for this region. For δ7Li, the average dissolved river water value (+19.2 ± 2.5‰, 2SD) was higher than bedrock, river sediment, and mineral δ7Li values, implying a fractionation process. For δ26Mg, the average dissolved river water value (−0.30 ± 0.14‰, 2SD) was within error of bedrock and river sediment and within the range of mineral δ26Mg values (−1.63 to +0.06‰). The river δ26Mg values are consistent with the mixing of Mg derived from the same mineral phases previously identified from radiogenic isotope measurements as controlling the dissolved load chemistry. Glacier fed rivers previously measured in this region had δ26Mg values ~0.80‰ lower than those measured in the Leverett River which could be caused by a larger contribution from garnet (−1.63‰) dissolution compared to Leverett. This study highlights that dissolved Mg and Li isotope ratios in the Leverett River are affected by different processes (mixing and fractionation), and that since variations in silicate mineral δ26Mg values exist, preferential weathering of individual silicate minerals should be considered in addition to carbonate when interpreting dissolved δ26Mg values

    Experimental constraints on Mg isotope fractionation during clay formation: Implications for the global biogeochemical cycle of Mg

    Get PDF
    The direction and magnitude of magnesium (Mg) isotope fractionation attendant to the formation of clay minerals is fundamental to the use of Mg isotopes to decipher the biogeochemical cycling of Mg in the critical zone and for the oceanic Mg budget. This study provides experimental data on the Mg fractionation factor for two smectite- group minerals (stevensite and saponite) at temperatures relevant for Earth surface processes. The resultant solids were characterised by X-ray di↵raction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to confirm the mineralogy and crystallinity of the product. A series of experiments were performed to asses the impact of temperature and pH on isotope fractionation. Bulk solid samples were treated with ammonium chloride to remove exchangeable Mg in order to distinguish the Mg isotopic fractionation between these sites and octahedral sites. All bulk and residual solids were enriched in 24Mg compared to the initial solution and 26Mg values of the exchangeable pool were lower than, or within error of, the initial solution. Final solutions were either within error of, or enriched in, 26Mg compared to the initial solution, depending on the fraction of Mg removed from solution (f Mg) For experiments with similar f Mg, increasing the pH resulted in a higher reaction rate and reduced fractionation from the initial solution. This could point to a kinetic effect, but we note composition of the residual solid (Li/Mg ratio) was also dependent on pH. The change in the Li/Mg ratio was reflected in the wavenumber of the Mg3- OH stretch in FT-IR data, which is a proxy for bond strength, and suggests an equilibrium control. An equilibrium control is further supported by the observation of reduced fractionation compared to the initial solution with increasing temperature. Rayleigh and batch fractionation models were fitted to the data giving fractionation factors of 0.9991 and 0.9990 respectively. We compare our results with existing field and experimental data and suggest that the apparent contradictions surrounding the direction of Mg isotope fractionation into phyllosilicate minerals could be due to the similarity of Mg bond lengths between clay octahedral sites and dissolved Mg. Thus small changes in mineral structure or initial solution conditions may result in a change in bond length suffcient to alter the direction of fractionation, implying that the magnitude and direction of Mg isotope fractionation into clay minerals could be dependent on local field conditions. Alternatively, if the precipitation of secondary clay minerals in the field preferentially incorporates light Mg, as observed in this experimental study, this implies the contribution of carbonate weathering to dissolved Mg fluxes has been underestimated, with major implications for the global biogeochemical cycle of Mg.NERC Standard Grant NE/M001865/1 NERC New Investigators Grants NE/K000705/1and NE/K000705/2 Marie Curie Intra-European Fellowship (PIEF-GA-2012-331501) Leverhulme Trust grant PLP-2015-28

    Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments

    Get PDF
    In order to investigate the effect of glaciation on mineral weathering, the stream water chemistry and the bacterial community composition were analysed in two catchments containing nominally identical sedimentary formations but which differed in the extent of glaciation. The stream waters were analysed for major ions, δ34S, δ18OSO4 and δ18OH2O and associated stream sediments were analysed by 16S rRNA gene tagged sequencing.\ud \ud Sulphate comprised 72–86% and 35–45% of the summer anion budget (in meq) in the unglaciated and glaciated catchments respectively. This indicates that sulfuric acid generated from pyrite weathering is a significant weathering agent in both catchments. Based on the relative proportions of cations, sulphate and bicarbonate, the stream water chemistry of the unglaciated catchment was found to be consistent with a sulphide oxidation coupled to silicate dissolution weathering process whereas in the glaciated catchment both carbonates and silicates weathered via both sulfuric and carbonic acids.\ud \ud Stable isotope measurements of sulphate, together with inferences of metabolic processes catalysed by resident microbial communities, revealed that the pyrite oxidation reaction differed between the two catchments. No δ34S fractionation relative to pyrite was observed in the unglaciated catchment and this was interpreted to reflect pyrite oxidation under oxic conditions. In contrast, δ34S and δ18OSO4 values were positively correlated in the glaciated catchment and were positively offset from pyrite. This was interpreted to reflect pyrite oxidation under anoxic conditions with loss of S intermediates.\ud \ud This study suggests that glaciation may alter stream water chemistry and the mechanism of pyrite oxidation through an interplay of biological, physical and chemical factors

    Mg and Li Stable Isotope Ratios of Rocks, Minerals, and Water in an Outlet Glacier of the Greenland Ice Sheet

    Get PDF
    Magnesium and lithium stable isotope ratios (δ26Mg and δ7Li) have shown promise as tools to elucidate biogeochemical processes both at catchment scales and in deciphering global climate processes. Nevertheless, the controls on riverine Mg and Li isotope ratios are often difficult to determine as a myriad of factors can cause fractionation from bulk rock values such as secondary mineral formation and preferential weathering of isotopically distinct mineral phases. Quantifying the relative contribution from carbonate and silicate minerals to the dissolved load of glacierized catchments is particularly crucial for determining the role of chemical weathering in modulating the carbon cycle over glacial-interglacial periods. In this study we report Mg and Li isotope data for water, river sediment, rock, and mineral separates from the Leverett Glacier catchment, West Greenland. We assess whether the silicate mineral contributions to the dissolved load, previously determined using radiogenic Sr, Ca, Nd, and Hf isotopes, are consistent with dissolved Mg and Li isotope data, or whether a carbonate contribution is required as inferred previously for this region. For δ7Li, the average dissolved river water value (+19.2 ± 2.5‰, 2SD) was higher than bedrock, river sediment, and mineral δ7Li values, implying a fractionation process. For δ26Mg, the average dissolved river water value (−0.30 ± 0.14‰, 2SD) was within error of bedrock and river sediment and within the range of mineral δ26Mg values (−1.63 to +0.06‰). The river δ26Mg values are consistent with the mixing of Mg derived from the same mineral phases previously identified from radiogenic isotope measurements as controlling the dissolved load chemistry. Glacier fed rivers previously measured in this region had δ26Mg values ~0.80‰ lower than those measured in the Leverett River which could be caused by a larger contribution from garnet (−1.63‰) dissolution compared to Leverett. This study highlights that dissolved Mg and Li isotope ratios in the Leverett River are affected by different processes (mixing and fractionation), and that since variations in silicate mineral δ26Mg values exist, preferential weathering of individual silicate minerals should be considered in addition to carbonate when interpreting dissolved δ26Mg values

    Calcium isotope fractionation in alpine plants

    Get PDF
    In order to develop Ca isotopes as a tracer for biogeochemical Ca cycling in terrestrial environments and for Ca utilisation in plants, stable calcium isotope ratios were measured in various species of alpine plants, including woody species, grasses and herbs. Analysis of plant parts (root, stem, leaf and flower samples) provided information on Ca isotope fractionation within plants and seasonal sampling of leaves revealed temporal variation in leaf Ca isotopic composition. There was significant Ca isotope fractionation between soil and root tissue \Updelta^{44/42}\hbox{Ca}_{\rm root-soil} \approx -0.40\,\permille in all investigated species, whereas Ca isotope fractionation between roots and leaves was species dependent. Samples of leaf tissue collected throughout the growing season also highlighted species differences: Ca isotope ratios increased with leaf age in woody species but remained constant in herbs and grasses. The Ca isotope fractionation between roots and soils can be explained by a preferential binding of light Ca isotopes to root adsorption sites. The observed differences in whole plant Ca isotopic compositions both within and between species may be attributed to several potential factors including root cation exchange capacity, the presence of a woody stem, the presence of Ca oxalate, and the levels of mycorrhizal infection. Thus, the impact of plants on the Ca biogeochemical cycle in soils, and ultimately the Ca isotope signature of the weathering flux from terrestrial environments, will depend on the species present and the stage of vegetation successio

    APECS’ Online Conference, Virtual Posters and Webinars to the World

    Get PDF
    The Association of Polar Early Career Scientists (APECS) is a multidisciplinary, international organization dedicated to maintaining a network of early career researchers (ECRs) and professionals (ECPs) to share ideas, develop collaborative research directions, provide opportunities for career development, and promote education and outreach as an integral component of Polar research. Science outreach is one of APECS’ key objectives and we have found that online media is a powerful tool for STEAM (Science, Technology, Engineering, Art, and Mathematics) knowledge transfer. We introduce the use of online presentations as a platform for communication, education, and networking. APECS’ Online Conference, virtual posters, and webinar series provide case studies to examine how online technology bridges geographic and disciplinary boundaries. APECS’ Online Conference allows ECRs and ECPs to present their research to an interactive, online room of viewers. The third iteration of this annual event (March 2017) appealed to science communicators with the theme: “Outside the Box: encouraging alternative solutions for undertaking and communicating polar research”. Virtual poster sessions have allowed members to share work on an array of topics, from whaling and tourism to showcasing studies affiliated with specific national research programs. Webinars have covered a variety of skills-based and scientific topics, with invited speakers addressing everything from writing grant proposals to eco-cultural communication. Each presentation is recorded and saved on APECS’ website as a free resource. ECRs, ECPs, and APECS mentors from around the world attend our events, promoting diversity in networking and helping steer the Arctic community in positive directions. We will provide examples of connections fostered by and benefits of online events, including easier dissemination of ideas across geographically distant regions and minimal cost. While this presentation focuses on APECS’ experiences, we will highlight how innovative communication promotes international cooperation and offer suggestions on how to incorporate similar elements into other outreach programs

    Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    Get PDF
    he identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (εNd = −20.6 to −13.4; 87Sr ∕ 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr ∕ 86Sr and low εNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr ∕ 86Sr and high εNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed end-members through time

    APECS as an Arctic Stakeholder: Training Future Leadership of the Polar Research Community

    Get PDF
    The Association of Polar Early Career Scientists (APECS) is an international, interdisciplinary NGO for undergraduate and graduate students, postdoctoral researchers, early career professionals, educators, and others interested in polar regions and the wider cryosphere. The existence of APECS as a stakeholder is fundamental towards developing diverse future leadership in the Arctic community. Celebrating its 10th anniversary in 2017, APECS has grown from a small group established during the 2007/08 International Polar Year (IPY) to a global community of more than 2,300 actively-engaged early career researchers (ECRs) and professionals (ECPs) interested in the polar regions, from over 60 countries; within the last decade, more than 7,500 individuals joined our network during the early stages of their careers. APECS creates opportunities for innovative collaborations and information exchange amongst ECRs and established professionals, thereby helping to recruit, retain, increase cooperation amongst, and promote future polar experts. APECS works with polar organizations to enable skilled early career representatives to contribute to their goals and projects, including the International Arctic Science Committee (IASC) and the Arctic Council Working Groups ‘Arctic Monitoring and Assessment Programme’ (AMAP) and ‘Conservation of Arctic Flora and Fauna’ (CAFF). In these capacities, APECS members contribute to the scientific activities of the working groups, synthesizing research to identify and address areas of concern to Arctic ecosystems, communities, and Arctic residents. This presentation discusses how APECS contributes to training future leadership in the Arctic community and how members influence polar science and policy. We highlight how APECS updates activities to reflect scientific, policy, and environmental challenges in order to provide the most relevant resources to our members. Early engagement of ECRs and ECPs develops a workforce more adept to bridging the divide between scientific research and sustainable development in the Arctic and, therefore, is an investment in the future of the Arctic
    corecore