68 research outputs found

    Oral cancer awareness of undergraduate medical and dental students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of oral cancer is increasing in the United Kingdom. Early detection of oral cancers makes them more amenable to treatment and allows the greatest chance of cure. Delay in presentation and/or referral has a significant effect on the associated morbidity and mortality. Lack of general medical practitioner and general dental practitioner oral cancer knowledge has been shown to contribute to delays in referral and treatment. The aim of this study was to investigate the oral cancer awareness of future general medical and general dental practitioners by assessing undergraduate medical and dental students' knowledge of prevention and early detection of oral cancer.</p> <p>Method</p> <p>Questionnaires were delivered to undergraduate medical and dental students at the University of Dundee, assessing oral examination habits, delivery of advice on oral cancer risk factors, knowledge of oral cancer risk factors and clinical appearance, preferred point of referral and requests for further information.</p> <p>Results</p> <p>Undergraduate medical students were less likely to examine patients' oral mucosa routinely and less likely to advise patients about risk factors for oral cancer. Medical students identified fewer oral cancer risk factors. In particular alcohol use was identified poorly. Medical students also identified fewer oral changes associated with oral cancer. Erythroplakia and erythroleukoplakia were identified poorly. Medical students felt less well informed regarding oral cancer. 86% and 92% of undergraduate medical and dental students respectively requested further information about oral cancer.</p> <p>Conclusion</p> <p>This study highlights the need for improved education of undergraduate medical and dental students regarding oral cancer.</p

    Type 2 Diabetes Susceptibility Gene Expression in Normal or Diabetic Sorted Human Alpha and Beta Cells: Correlations with Age or BMI of Islet Donors

    Get PDF
    BACKGROUND: Genome-wide association studies have identified susceptibility genes for development of type 2 diabetes. We aimed to examine whether a subset of these (comprising FTO, IDE, KCNJ11, PPARG and TCF7L2) were transcriptionally restricted to or enriched in human beta cells by sorting islet cells into alpha and beta - specific fractions. We also aimed to correlate expression of these transcripts in both alpha and beta cell types with phenotypic traits of the islet donors and to compare diabetic and non-diabetic cells. METHODOLOGY/PRINCIPAL FINDINGS: Islet cells were sorted using a previously published method and RNA was extracted, reverse transcribed and used as the template for quantitative PCR. Sorted cells were also analysed for insulin and glucagon immunostaining and insulin secretion from the beta cells as well as insulin, glucagon and GLP-1 content. All five genes were expressed in both alpha and beta cells, with significant enrichment of KCNJ11 in the beta cells and of TCF7L2 in the alpha cells. The ratio of KCNJ11 in beta to alpha cells was negatively correlated with BMI, while KCNJ11 expression in alpha cells was negatively correlated with age but not associated with BMI. Beta cell expression of glucagon, TCF7L2 and IDE was increased in cells from islets that had spent more time in culture prior to cell sorting. In beta cells, KCNJ11, FTO and insulin were positively correlated with each other. Diabetic alpha and beta cells had decreased expression of insulin, glucagon and FTO. CONCLUSIONS/SIGNIFICANCE: This study has identified novel patterns of expression of type 2 diabetes susceptibility genes within sorted islet cells and suggested interactions of gene expression with age or BMI of the islet donors. However, expression of these genes in islets is less associated with BMI than has been found for other tissues

    Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid

    Get PDF
    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate

    Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

    Get PDF
    We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS− strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts

    Breast cancer in young women

    Get PDF
    Although uncommon, breast cancer in young women is worthy of special attention due to the unique and complex issues that are raised. This article reviews specific challenges associated with the care of younger breast cancer patients, which include fertility preservation, management of inherited breast cancer syndromes, maintenance of bone health, secondary prevention, and attention to psychosocial issues

    Commercial products for osteochondral tissue repair and regeneration

    Get PDF
    The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015)info:eu-repo/semantics/publishedVersio

    Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities

    Full text link
    Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and ÎČ-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity
    • 

    corecore