74 research outputs found

    Pre-analytical conditions for multiparameter platelet flow cytometry

    Get PDF
    Background Flow cytometry is an important technique for understanding multiple aspects of blood platelet biology. Despite the widespread use of the platform for assessing platelet function, the optimisation and careful consideration of pre-analytical conditions, sample processing techniques and data analysis strategies should be regularly assessed. When set up and designed with optimal conditions it can ensure the acquisition of robust and reproducible flow cytometry data. However, these parameters are rarely described despite their importance. Objectives We aimed to characterise the effects of several pre-analytical variables on the analysis of blood platelets by multiparameter fluorescent flow cytometry. Methods We assessed anticoagulant choice, sample material, sample processing and storage times on four distinct and commonly used markers of platelet activation including fibrinogen binding, expression of CD62P and CD42b, and phosphatidylserine exposure. Results The use of sub-optimal conditions led to increases in basal platelet activity and reduced sensitivities to stimulation, however the use of optimal conditions protected the platelets from artefactual stimulation and preserved basal activity and sensitivity to activation. Summary The optimal pre-analytical conditions identified here for the measurement of platelet phenotype by flow cytometry suggests a framework for future development of multiparameter platelet assays for high quality datasets and advanced analysis

    Atherogenic Lipid Stress Induces Platelet Hyperactivity Through CD36-Mediated Hyposensitivity To Prostacyclin-; The Role Of Phosphodiesterase 3A

    Get PDF
    Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signalling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidised low density lipoproteins (oxLDL) associated with dyslipidaemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signalling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a PDE-insensitive cAMP analogue, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of phosphodiesterase 3A (PDE3A), leading to diminished cAMP signalling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signalling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidised phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild type mice strongly promoted FeCl3 induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidaemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signalling. In contrast, platelet sensitivity to a PDE-resistant cAMP analogue remained normal. Genetic deletion of CD36, protected dyslipidaemic animals from PGI2 hyposensitivity and restored PKA signalling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signalling.  

    Protein Kinase A Regulates Platelet Phosphodiesterase 3A through an A-Kinase Anchoring Protein Dependent Manner

    Get PDF
    Platelet activation is critical for haemostasis, but if unregulated can lead to pathological thrombosis. Endogenous platelet inhibitory mechanisms are mediated by prostacyclin (PGI2)-stimulated cAMP signalling, which is regulated by phosphodiesterase 3A (PDE3A). However, spatiotemporal regulation of PDE3A activity in platelets is unknown. Here, we report that platelets possess multiple PDE3A isoforms with seemingly identical molecular weights (100 kDa). One isoform contained a unique N-terminal sequence that corresponded to PDE3A1 in nucleated cells but with negligible contribution to overall PDE3A activity. The predominant cytosolic PDE3A isoform did not possess the unique N-terminal sequence and accounted for >99% of basal PDE3A activity. PGI2 treatment induced a dose and time-dependent increase in PDE3A phosphorylation which was PKA-dependent and associated with an increase in phosphodiesterase enzymatic activity. The effects of PGI2 on PDE3A were modulated by A-kinase anchoring protein (AKAP) disruptor peptides, suggesting an AKAP-mediated PDE3A signalosome. We identified AKAP7, AKAP9, AKAP12, AKAP13, and moesin expressed in platelets but focussed on AKAP7 as a potential PDE3A binding partner. Using a combination of immunoprecipitation, proximity ligation techniques, and activity assays, we identified a novel PDE3A/PKA RII/AKAP7 signalosome in platelets that integrates propagation and termination of cAMP signalling through coupling of PKA and PDE3A

    Ticagrelor inverse agonist activity at the P2Y12 receptor is non-reversible versus its endogenous agonist adenosine 5´-diphosphate

    Get PDF
    Background Ticagrelor is labelled as a reversible, direct-acting platelet P2Y12 receptor (P2Y12R) antagonist that is indicated clinically for the prevention of thrombotic events in patients with acute coronary syndrome (ACS). As with many antiplatelet drugs, ticagrelor therapy increases bleeding risk in patients which in emergency situations requires platelet transfusion although there is ongoing debate on its effectiveness following ticagrelor therapy. The aim of this study was to further examine the reversibility of ticagrelor at the P2Y12R. Methods Studies were performed in human platelets with both P2Y12R-stimulated GTPase activity and platelet aggregation assessed. Cell-based bioluminescence resonance energy transfer (BRET) assays were also undertaken to assess G protein subunit activation downstream of P2Y12R activation. Results Initial studies revealed a range of P2Y12R ligands including ticagrelor displayed inverse agonist activity at the P2Y12R. Of these only ticagrelor was resistant to wash-out. In both human platelets and cell-based assays, washing failed to reverse ticagrelor-dependent inhibition of ADP-stimulated P2Y12R function in contrast to other P2Y12R antagonists. The P2Y12R agonist 2MeSADP, which was also resistant to wash-out, was able to effectively compete with ticagrelor. In silico docking revealed that ticagrelor and 2MeSADP penetrated more deeply into the orthosteric binding pocket of the P2Y12R than other P2Y12R ligands. Conclusion Ticagrelor binding to the P2Y12R is prolonged and more akin to that of an irreversible antagonist especially versus the endogenous P2Y12R agonist ADP. This study highlights the potential clinical need for novel ticagrelor reversal strategies in patients with spontaneous major bleeding and bleeding associated with urgent invasive procedures

    Imaging in breast cancer: Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy

    Get PDF
    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are non-invasive diagnostic techniques that employ near-infrared (NIR) light to quantitatively characterize the optical properties of centimeter-thick, multiple-scattering tissues. Although NIR was first applied to breast diaphanography more than 70 years ago, quantitative optical methods employing time- or frequency-domain 'photon migration' technologies have only recently been used for breast imaging. Because their performance is not limited by mammographic density, optical methods can provide new insight regarding tissue functional changes associated with the appearance, progression, and treatment of breast cancer, particularly for younger women and high-risk subjects who may not benefit from conventional imaging methods. This paper reviews the principles of diffuse optics and describes the development of broadband DOS for quantitatively measuring the optical and physiological properties of thick tissues. Clinical results are shown highlighting the sensitivity of diffuse optics to malignant breast tumors in 12 pre-menopausal subjects ranging in age from 30 to 39 years and a patient undergoing neoadjuvant chemotherapy for locally advanced breast cancer. Significant contrast was observed between normal and tumor regions of tissue for deoxy-hemoglobin (p = 0.005), oxy-hemoglobin (p = 0.002), water (p = 0.014), and lipids (p = 0.0003). Tissue hemoglobin saturation was not found to be a reliable parameter for distinguishing between tumor and normal tissues. Optical data were converted into a tissue optical index that decreased 50% within 1 week in response to neoadjuvant chemotherapy. These results suggest a potential role for diffuse optics as a bedside monitoring tool that could aid the development of new strategies for individualized patient care

    Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease

    Get PDF
    Disease models: A reflex reaction A simple reflex in flies can be used to test the effectiveness of therapies that slow neurodegeneration in Parkinson’s disease (PD). Christopher Elliott and colleagues at the University of York in the United Kingdom investigated the contraction of the proboscis muscle which mediates a taste behavior response and is regulated by a single dopaminergic neuron. Flies bearing particular mutations in the PD-associated gene leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons lost their ability to feed on a sweet solution. This was due to the movement of the proboscis muscle becoming slower and stiffer, hallmark features of PD. The authors rescued the impaired reflex reaction by feeding the flies l-DOPA or LRRK2 inhibitors. These findings highlight the proboscis extension response as a useful tool to identify other PD-associated mutations and test potential therapeutic compounds

    NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

    Get PDF
    Extent: 14p.Background: Without appropriate cellular models the etiology of idiopathic Parkinson’s disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson’s disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson’s Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson’s disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson’s disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.Anthony L. Cook, Alejandra M. Vitale, Sugandha Ravishankar, Nicholas Matigian, Greg T. Sutherland, Jiangou Shan, Ratneswary Sutharsan, Chris Perry, Peter A. Silburn, George D. Mellick, Murray L. Whitelaw, Christine A. Wells, Alan Mackay-Sim and Stephen A. Woo

    Commercial products for osteochondral tissue repair and regeneration

    Get PDF
    The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015)info:eu-repo/semantics/publishedVersio

    Multidimensional flow cytometry reveals novel platelet subpopulations in response to prostacyclin

    No full text
    Background Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. Objectives and Methods We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform‐accelerated interpolation‐based t‐stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. Results Platelet activation (SFLLRN/CRP‐XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo/fbhi (68%), PShi/fblo (23%), and PShi/fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi/PSlo/fblo (64%), CD62Phi/PSlo/fbhi (22%), CD62Phi/PShi/fblo (3%), and CD62Plo/PSlo/fblo (12%). Mechanistically this was linked to PGI2‐mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2‐treated platelets were characterized by both elevated vasodilator‐stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP‐XL‐induced platelet‐monocyte aggregation despite reducing markers of hemostatic function. Conclusion The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2. Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers
    corecore