400 research outputs found

    Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers

    Get PDF
    The size and orientation of calcium carbonate crystals influence the structure and strength of the eggshells of chickens. In this study, estimates of heritability were found to be high (0.6) for crystal size and moderate (0.3) for crystal orientation. There was a strong positive correlation (0.65) for crystal size and orientation with the thickness of the shell and, in particular, with the thickness of the mammillary layer. Correlations with shell breaking strength were positive but with a high standard error. This was contrary to expectations, as in man-made materials smaller crystals would be stronger. We believe the results of this study support the hypothesis that the structural organization of shell, and in particular the mammillary layer, is influenced by crystal size and orientation, especially during the initial phase of calcification. Genetic associations for crystal measurements were observed between haplotype blocks or individual markers for a number of eggshell matrix proteins. Ovalbumin and ovotransferrin (LTF) markers for example were associated with crystal size, while ovocleidin-116 and ovocalyxin-32 (RARRES1) markers were associated with crystal orientation. The location of these proteins in the eggshell is consistent with different phases of the shell-formation process. In conclusion, the variability of crystal size, and to a lesser extent orientation, appears to have a large genetic component, and the formation of calcite crystals are intimately related to the ultrastructure of the eggshell. Moreover, this study also provides evidence that proteins in the shell influence the variability of crystal traits and, in turn, the shell’s thickness profile. The crystal measurements and/or the associated genetic markers may therefore prove to be useful in selection programs to improve eggshell quality

    Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs

    Get PDF
    The bacterial load on the eggshell surface is a key factor in predicting the bacterial penetration and contamination of the egg interior. The eggshell cuticle is the first line of defense against vertical penetration by microbial food-borne pathogens such as Salmonella Enteritidis. Egg producers are increasingly introducing alternative caging systems into their production chain as animal welfare concerns become of greater relevance to today’s consumer. Stress that is introduced by hen aggression and modified nesting behavior in furnished cages can alter the physiology of egg formation and affect the cuticle deposition/quality. The goal of this study was to determine the impact of caging systems (conventional, enriched, free-run, and free-range), on eggshell cuticle parameters and the eggshell bacterial load. The cuticle plug thickness and pore length were higher in the free-range eggs as compared to conventional eggs. The eggshells from alternative caging (enriched and free-range) had a higher total cuticle as compared to conventional cages. A reduction in bacterial cell counts was observed on eggshells that were obtained from free-range eggs as compared to the enriched systems. An inverse correlation between the contact angle and Salmonella adherence was observed. These results indicate that the housing systems of layer hens can modify the cuticle quality and thereby impact bacterial adherence and food safety.Egg Farmers of Canada (EFC) grant number: 551562, Livestock Research Innovation Corporation (LRIC) grant number 570593PID2020- 116660GB-I00, RNM-938 group (Junta de Andalucía)UCE PP 2016.05 (Universidad de Granada

    Properties, genetics and innate immune function of the cuticle in egg-laying species

    Get PDF
    International audienceCleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli . Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles

    The true temperature scale of carbon

    Get PDF
    Spectral emissive power of Acheson graphite at 0.660μ. — The spectral emissive power of Acheson graphite for the wave-length 0.660μ has been determined for the temperature range from 1250°K to 2700°K. The observations were made on a small tubular graphite resistance furnace with a hole in the wall and are best summarized by the relation: ε=0.984-5.8×10^-5T. Measurements of the temperature distribution along the furnace afford determinations of the ratio of resistivity to thermal conductivity at three temperatures

    Subjective vision and hearing impairment and falls among community-dwelling adults: a prospective study in the Survey of Health, Ageing and Retirement in Europe (SHARE)

    Get PDF
    Purpose: To investigate the association between vision and hearing impairment and falls in community-dwelling adults aged ≥ 50 years.Methods: This is a prospective study on 50,986 participants assessed in Waves 6 and 7 of the Survey of Health, Ageing and Retirement in Europe. At baseline, we recorded socio-demographic data, clinical factors and self-reported vision and hearing impairment. We classified participants as having good vision and hearing, impaired vision, impaired hearing or impaired vision and hearing. We recorded falls in the six months prior to the baseline and 2-year follow-up interviews. The cross-sectional and longitudinal associations between vision and hearing impairment categories and falls were analysed by binary logistic regression models; odds ratios (OR) and 95% confidence intervals (CI) were calculated. All analyses were adjusted for socio-demographic and clinical factors.Results: Mean age was 67.1 years (range 50–102). At baseline, participants with impaired vision, impaired hearing, and impaired vision and hearing had an increased falls risk (OR (95% CI)) of 1.34 (1.22–1.49), 1.34 (1.20–1.50) and 1.67 (1.50–1.87), respectively, compared to those with good vision and hearing (all p

    Association between pain intensity and depressive symptoms in community-dwelling adults: longitudinal findings from the Survey of Health, Ageing and Retirement in Europe (SHARE)

    Get PDF
    Purpose: To investigate the longitudinal associations between pain and depressive symptoms in adults. Methods: Prospective cohort study on data from 28,515 community-dwelling adults ≥ 50 years, free from depression at baseline (Wave 5), with follow-up in Wave 6 of the Survey of Health, Ageing and Retirement in Europe (SHARE). Significant depressive symptoms were defined by a EURO-D score ≥ 4. The longitudinal association between baseline pain intensity and significant depressive symptoms at follow-up was analysed using logistic regression models; odds ratios (ORs) and confidence intervals (CI) were calculated, adjusting for socio-demographic and clinical factors, physical inactivity, loneliness, mobility and functional impairments. Results: Mean age was 65.4 years (standard deviation 9.0, range 50–99); 14,360 (50.4%) participants were women. Mean follow-up was 23.4 (standard deviation 3.4) months. At baseline, 2803 (9.8%) participants reported mild pain, 5253 (18.4%) moderate pain and 1431 (5.0%) severe pain. At follow-up, 3868 (13.6%) participants—1451 (10.3%) men and 2417 (16.8%) women—reported significant depressive symptoms. After adjustment, mild, moderate and severe baseline pain, versus no pain, were associated with an increased likelihood of significant depressive symptoms at follow-up: ORs (95% CI) were 1.20 (1.06–1.35), 1.32 (1.20–1.46) and 1.39 (1.19–1.63), respectively. These associations were more pronounced in men compared to women, and consistent in participants aged 50–64 years, those without mobility or functional impairment, and those without loneliness at baseline. Conclusion: Higher baseline pain intensity was longitudinally associated with a greater risk of significant depressive symptoms at 2-year follow-up, in community-dwelling adults without baseline depression

    Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell

    Get PDF
    Avian (and formerly dinosaur) eggshells form a hard, protective biomineralized chamber for embryonic growth—an evolutionary strategy that has existed for hundreds of millions of years. We show in the calcitic chicken eggshell how the mineral and organic phases organize hierarchically across different length scales and how variation in nanostructure across the shell thicknessmodifies its hardness, elastic modulus, and dissolution properties.We also show that the nanostructure changes during egg incubation, weakening the shell for chick hatching. Nanostructure and increased hardness were reproduced in synthetic calcite crystals grown in the presence of the prominent eggshell protein osteopontin. These results demonstrate the contribution of nanostructure to avian eggshell formation, mechanical properties, and dissolution.This work was supported by a grant from the Canadian Institutes of Health Research (no. MOP-142330) and the Natural Sciences and Engineering Research Council of Canada (NSERC; no. RGPIN-2016-05031) to M.D.M., an NSERC (no. RGPIN-2016-04410) Discovery grant to M.T.H., a Spanish Government grant (CGL2015-64683-P) to A.B.R.-N., an Emmy Noether research grant from the German Research Foundation (no. WO1712/3-1) to S.E.W., and an NSF grant (NSF BMAT; no. 1507736) to J.J.G. M.D.M. is a member of the Fonds de Recherche Quebec–Sante Network for Oral and Bone Health Research and the McGill Centre for Bone and Periodontal Researc
    • …
    corecore