238 research outputs found

    Protection of liposomes against fusion during drying by oligosaccharides is not predicted by the calorimetric glass transition temperatures of the dry sugars

    Get PDF
    Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms. It has been shown in previous studies that different structural families of oligosaccharides have different efficacies to interact with phospholipid headgroups and protect membranes from solute leakage during drying. Here, we have compared three families of linear oligosaccharides (fructans (inulins), malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent protection of egg phosphatidylcholine liposomes against membrane fusion. We found increased protection with chain length up to a degree of polymerization (DP) of 5 for malto-oligosaccharides, and a decrease for inulins and manno-oligosaccharides. Differential scanning calorimetry measurements showed that for all sugars the glass transition temperature (T-g) increased with DP, although to different degrees for the different oligosaccharide families. Higher T-g values resulted in reduced membrane fusion only for malto-oligosaccharides below DP5. Contrary to expectation, for inulins, manno-oligosaccharides and malto-oligosaccharides of a DP above five, fusion increased with increasing T-g, indicating that other physical parameters are more important in determining the ability of different sugars to protect membranes against fusion during drying. Further research will be necessary to experimentally define such parameters

    Disordered cold regulated 15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in-vivo

    Get PDF
    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic a-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins

    Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state

    Get PDF
    Background: Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state. Results: Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (T-m) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed T-m, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased T-m, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers. Conclusions: The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions

    A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state

    Get PDF
    Late embryogenesis abundant (LEA) proteins are a highly diverse group of polypeptides expected to play important roles in desiccation tolerance of plant seeds. They are also found in other plant tissues and in some anhydrobotic invertebrates, fungi, protists and prokaryotes. The LEA protein LEAM accumulates in the matrix space of pea (Pisum sativum) mitochondria during late seed maturation. LEAM is an intrinsically disordered protein folding into amphipathic α-helix upon desiccation. This suggests that it could interact with the inner mitochondrial membrane, providing structural protection in dry seeds. Here, we have used Fourier-transform infrared and fluorescence spectroscopy to gain insight into the molecular details of interactions of LEAM with phospholipid bilayers in the dry state and their effects on liposome stability. LEAM interacted specifically with negatively charged phosphate groups in dry phospholipids, increasing fatty acyl chain mobility. This led to an enhanced stability of liposomes during drying and rehydration, but also upon freezing. Protection depended on phospholipid composition and was strongly enhanced in membranes containing the mitochondrial phospholipid cardiolipin. Collectively, the results provide strong evidence for a function of LEAM as a mitochondrial membrane protectant during desiccation and highlight the role of lipid composition in the interactions between LEA proteins and membranes

    Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions

    Get PDF
    Background: Thellungiella has been proposed as an extremophile alternative to Arabidopsis to investigate environmental stress tolerance. However, Arabidopsis accessions show large natural variation in their freezing tolerance and here the tolerance ranges of collections of accessions in the two species were compared. Results: Leaf freezing tolerance of 16 Thellungiella accessions was assessed with an electrolyte leakage assay before and after 14 days of cold acclimation at 4 degrees C. Soluble sugars (glucose, fructose, sucrose, raffinose) and free polyamines (putrescine, spermidine, spermine) were quantified by HPLC, proline photometrically. The ranges in nonacclimated freezing tolerance completely overlapped between Arabidopsis and Thellungiella. After cold acclimation, some Thellungiella accessions were more freezing tolerant than any Arabidopsis accessions. Acclimated freezing tolerance was correlated with sucrose levels in both species, but raffinose accumulation was lower in Thellungiella and only correlated with freezing tolerance in Arabidopsis. The reverse was true for leaf proline contents. Polyamine levels were generally similar between the species. Only spermine content was higher in nonacclimated Thellungiella plants, but decreased during acclimation and was negatively correlated with freezing tolerance. Conclusion: Thellungiella is not an extremophile with regard to freezing tolerance, but some accessions significantly expand the range present in Arabidopsis. The metabolite data indicate different metabolic adaptation strategies between the species

    Dissecting Rice Polyamine Metabolism under Controlled Long-Term Drought Stress

    Get PDF
    A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate), substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation

    Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana

    Get PDF
    Many organisms accumulate compatible solutes in response to salt or desiccation stress. Moderate halotolerant cyanobacteria and some heterotrophic bacteria synthesize the compatible solute glucosylglycerol (GG) as their main protective compound. In order to analyse the potential of GG to improve salt tolerance of higher plants, the model plant Arabidopsis thaliana was transformed with the ggpPS gene from the γ-proteobacterium Azotobacter vinelandii coding for a combined GG-phosphate synthase/phosphatase. The heterologous expression of the ggpPS gene led to the accumulation of high amounts of GG. Three independent Arabidopsis lines showing different GG contents were characterized in growth experiments. Plants containing a low (1–2 μmol g−1 FM) GG content in leaves showed no altered growth performance under control conditions but an increased salt tolerance, whereas plants accumulating a moderate (2–8 μmol g−1 FM) or a high GG content (around 17 μmol g−1 FM) showed growth retardation and no improvement of salt resistance. These results indicate that the synthesis of the compatible solute GG has a beneficial effect on plant stress tolerance as long as it is accumulated to an extent that does not negatively interfere with plant metabolism
    corecore